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Abstract

Human–wildlife conflict has become a significant challenge for conservationists,

particularly in areas where endangered species, such as large carnivores,

are recovering. If we fail to keep a balance between the interests of humans

and wildlife, the human–wildlife conflict can have adverse outcomes.

However, the drivers of human–wildlife conflict, and how to mitigate con-

flict, are often poorly understood. In this study, we aimed to explore the

possible causes for and potential mitigating approaches to human–tiger
conflict risks through spatiotemporal niche partitioning. Based on data

from the reports of Amur tiger (Panthera tigris altaica) preying on cattle

and camera trap detection data from 2014 to 2019 in Hunchun, Northeast

China, we predicted Amur tiger occurrence and created risk maps of

human–tiger potential encounters. We found that Amur tiger occurrence

was positively driven by prey distribution and negatively by the distribution

of pastures used for domestic cattle grazing. Livestock was increasingly

predated in areas with limited preferred prey, that is, wild pig (Sus scrofa)

and sika (Cervus nippon), and in closer proximity to cattle-grazing land. On

the basis of our models, we divided areas utilized by human and Amur

tigers into low-, medium-, and high-risk areas across multiple spatiotempo-

ral scales. We suppose that multiple spatiotemporal scale niche partitioning

management might effectively reduce the risk of human–tiger encounters,
prompt harmonized coexistence between humans and tigers, and provide

new solutions to other areas experiencing human–wildlife conflicts.
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INTRODUCTION

Human–wildlife interactions are a part of human life in
rural and remote areas (Nyhus, 2016). While many inter-
actions are benign or positive (Soulsbury & White, 2015),
there are also many interactions that result in nega-
tive outcomes for both parties. The negative impacts of
human–tiger conflict include the loss of human lives and
livelihoods, which may result in negative attitudes
toward tiger conservation, such as retaliatory killing and
poaching of tigers (Figel et al., 2023; Tilson & Nyhus,
2009; Woodroffe et al., 2005). Among the big cats, tigers
(Panthera tigris) are probably the most notorious for con-
flicts with humans, as they have historically killed large
numbers of people (Tilson & Nyhus, 2009). In recent
decades, conflicts between humans and tigers have been
prevalent in almost all places where tigers have been
present (Barlow et al., 2010; Tilson & Nyhus, 2009;
Woodroffe et al., 2005).

In one study of human–tiger conflicts from 2000 to
2009 in parts of Russia, more than 200 incidents were
reported in about 128,000 km2 of Amur tiger habitat in
the Russian Far East (Goodrich et al., 2011). The compet-
itive exclusion principle states that two competing species
cannot coexist in the same ecological niche for long
periods of time. High levels of overlap in tiger habitat
urgently demand solutions to mitigate human–tiger con-
flict, and although there are many available interven-
tions, their effectiveness needs to be considered. Studies
have shown that large carnivores and humans can
share the same landscape (Malaney et al., 2018; Recio
et al., 2020). The success of conservation efforts lies in
legislation, public support, and practices, leading to the
coexistence of humans and animals (Carter et al., 2012;
Oberosler et al., 2020).

In China, Amur tiger mainly resides in the Hunchun
area. In recent years, due to the extensive attention of the
government and all sectors of society, the population and
distribution of Amur tiger have been effectively restored
(Wang et al., 2018), but human–tiger conflict remains an
issue. Due to the continuous recovery of the population
and distribution of Amur tiger (Qi et al., 2021), there are
more direct human encounters with Amur tigers, which
instils a sense of fear among local residents. This can
have a negative impact on the long-term recovery and
protection of Amur tiger.

If we cannot solve the problem of human–animal
conflict, then the very concept of harmonious coexistence
will be in danger. For the long-term survival of Amur
tiger in the Hunchun area, and to develop a prosperous
coexistence with local residents, as well as a model for
restoration of large carnivores to other landscapes, we
here use the competitive exclusion principle to alleviate

human–tiger conflict. In this research, firstly, we predicted
that Amur tiger occurrence is driven by prey distribution.
Secondly, we predicted that the reason why Amur tigers
prey on domestic animals is due to the lack of preferred
natural prey. Thirdly, we expected that the separation of
human and Amur tiger activities in both temporal and
spatial ecological niche dimensions can mitigate conflict
risk to some extent.

MATERIALS AND METHODS

Study area

Hunchun municipality is an area of 4899 km2 in Jilin
province, Northeast China. Most of the area belongs to
the Northeast Tiger and Leopard National Park (Figure 1).
It is connected to the Russian “Land of the Leopard
National Park” to the east and to North Korea to the
southwest. The area is a key corridor connecting the
Amur tiger in China and Russia (Gu et al., 2018).
The main animals include Amur tiger, Amur leopard
(Panthera pardus orientalis), sika, wild boar, roe deer
(Capreolus pygargus), and musk deer (Moschus
moschiferus) (Li et al., 2017; Soh et al., 2014). There are
98 villages and 4 towns (Gu et al., 2018), and based on a
questionnaire survey, 63 cattle-grazing pastures are pre-
sent within the area covering 3066 cows (Li et al., 2017).
The village economy relies heavily on livestock farming,
collection of non-timber forest products, and crop cultiva-
tion (Li et al., 2009). Since the establishment of the
Northeast Tiger and Leopard National Park, the
state-owned forest and collective forest have been sepa-
rately managed. Cattle grazing is prohibited in the
state-owned forest at some local sites, while daily produc-
tion and living activities can occur in the collective forest.

Data collection

We arranged automatic cameras on a 3.2 × 3.2 km grid
in three large areas within the study area. These three
areas were considered to be the most active areas for
Amur tigers at that time, and the size of the three areas
ranged from 261 to 760 km2 (average 559 ± 263.3 km2).
There were 228 cameras distributed among 110 camera
sites (Appendix S1: Table S1). Within a camera grid, we
maximized the probability of detection by placing cam-
eras in areas with signs of animal activity (e.g., animal
trails, lying locations, feeding locations, water sources,
and near scent-marked trees) and by setting up a pair of
cameras. For camera data processing, we first screened
all images and videos for animal or human activities.
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Then, we identified and classified species as well as
behavioral activities. We also recorded the time, date,
and temperature information of each image. To avoid
duplicate recordings for analysis, we defined independent
events as (1) consecutive photographs of different indi-
viduals, (2) consecutive photographs of individuals of the

same species but requiring a time interval of more than
0.5 h between photographs, and (3) nonconsecutive pho-
tographs of individuals of the same species (O’Brien
et al., 2003).

Data of livestock depredation by Amur tiger and the
grazing sites were obtained from Hunchun Bureau of

F I GURE 1 Camera trap and livestock depredation locations in the study area in Northeast China.
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Northeast Tiger and Leopard National Park. We analyzed
448 records of livestock depredation from 2014 to 2019
for which spatial coordinates were available. Each year,
the local government takes census on residents’ losses
without any apparent time gaps or other inconsistencies
caused by incomplete records, and all data were verified
and georeferenced by reserve staff. Data of vegetation
type, village, farmland, river, road, and Normalized
Difference Vegetation Index (NDVI) were derived from
the National Geographic Information Resource Directory
Service System (http://www.webmap.cn). The digital ele-
vation model (DEM) came from Geospatial Data Cloud
(http://www.gsclod.cn). Slope and aspect were derived
from DEM data using ArcGIS 10.7.

Modeling prey relative abundance

Relative abundance index (RAI) is the number of detections
per 100 camera trap days of every species (Martin-Garcia
et al., 2022; O’Brien et al., 2003; Rowcliffe et al., 2008). The
RAI of three species of Amur tiger prey (i.e., wild boar,
roe deer, and sika) were calculated based on each inde-
pendent event at each camera point in each year.
Pearson’s correlation method was used to calculate corre-
lation coefficients between independent variables such as
elevation, slope, slope direction (aspect), NDVI, and
nearest distance from camera point to different vegeta-
tion types, farmland, villages, roads, and rivers. When the
Pearson’s correlation coefficient was greater than 0.5, we
considered that there was a strong correlation between
the two variables, and therefore, one of them was
removed so that none of the variables entering the model
would affect the model because of correlation problems
(Li et al., 2017; Ramsay et al., 2003). We used generalized
linear models (GLMs) to test specific effect mechanisms
(Carlson et al., 2007; Guisan et al., 2002). We used
Akaike information criterion adjusted for small sample
sizes (AICc) for model selection (Burnham & Anderson,
2002). The model with the least AICc was considered the
optimal model. Then, the RAI of the three ungulates was
predicted using the predict function in R according to the
optimal model (R Core Team, 2022), and the model was
verified by the method of 10-fold cross validation
(Schouten et al., 2009).

Modeling prey occurrence probability

We used a Maxent model (Maximum Entropy Model) to
predict the annual occurrence probability of three ungu-
late prey species in Hunchun area. The Maxent model
maintains high accuracy even when the species

occurrence data are few, and its prediction accuracy
increases with increasing sample size and related ecologi-
cal factors (Baldwin, 2009; Perkins-Taylor & Frey, 2020).
The Jackknife test was used to analyze the importance of
ecological factors. The Kernel Density Estimation was
used to generate bias file for the sample area (Beck
et al., 2014; Syfert et al., 2013). Band Collect Statistics
were used to calculate co-variance, and variables with
correlation greater than 0.5 were removed (Snedecor &
Cochran, 1968). We used the Circuitscape Export tool to
standardize cell size and the extent of all environmental
variables in ArcGIS 10.7 (Anantharaman et al., 2019).
Afterward, the processed data of distribution sites of tar-
get species and relevant environmental variables, as in
our prey RAI modeling described above, were input into
the Maxent model. A division of 25% test set and 75%
training set was used to build the model. The regulariza-
tion multipliers were set to 1, 2, and 3, and we obtained
species distribution probability estimates ranging from
0 to 1, which can represent habitat suitability. The model
was verified using cross validation, and the area under
receiver operator characteristic curve (AUC) value was
used to evaluate the accuracy of the Maxent models.
Finally, the model with the maximum AUC value was
selected as the optimal occurrence probability model
(Tracy et al., 2019).

Modeling Amur tiger occurrence
probability

We used grazing distance and prey factors to explore the
activity patterns of Amur tigers. Distances between the
camera trap sites and the nearest grazing sites were cal-
culated using ArcGIS 10.7 (data from Forestry Bureau).
At each camera trapping site, we extracted RAIs and
probabilities of occurrence for the three ungulate species.
A generalized linear mixed model (GLMM) was used
to model Amur tiger occurrence as a function of RAI and
probability of occurrence of the three prey species
and distance from the grazing site. In the model, the
number of Amur tiger occurrences at each camera trap
site was used as the response variable, and year was con-
sidered as a random effect to distinguish the effects of
nonindependent variables, such as environmental
changes (van Doormaal et al., 2015). To increase the reli-
ability of the model, we checked for multicollinearity
using the variance inflation factor (Wang et al., 2017),
and we considered the model multicollinear when vari-
ance inflation factor > 3. The correlation screening
between independent variables was performed using the
Cor function, and one of the variables was removed when
jrj > 0.5 between two variables. Finally, the model with
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the minimum AIC value was selected as the optimal
model (Johnson & Omland, 2004). The GLMM was fitted
using the R package YawMMF (Zhang et al., 2020).
Residuals and R2 were calculated according to the scheme
proposed by Nakagawa and Schielzeth (2013).

Modeling occurrence probability of Amur
tiger predation on livestock

We compared the geospatial points of Amur tigers prey-
ing on livestock with the occurrence points of Amur
tigers recorded by cameras. GLMMs were fitted to model
Amur tigers preying on livestock (i.e., 1 for predation and
0 for non-predation) as a function of three prey species’
RAI and probability of occurrence based on the results of
the previous two models, as well as distance to grazing.
Year was considered as a random effect to distinguish the
effects of nonindependent variables, such as environmen-
tal changes (van Doormaal et al., 2015). Multicollinearity,
correlation, GLMM fitting, and calculation of residual
variance and R2 are as described above in our Amur tiger
occurrence modeling section. We drew model receiver oper-
ating characteristic (ROC) and calculated model area under
the curve (AUC) values in R (Robin et al., 2011). The
Wilcoxon test was used to test large ungulate biomass dif-
ferences of three prey species (i.e., three ungulate species’
RAI multiplied by their body mass) at predation and
non-predation sites to assist in the validation of the model.

Modeling resident occurrence probability

As described in the prey RAI modeling above, the num-
ber of independent resident occurrence events captured
by each camera was the response variable, and the proba-
bility of local resident occurrence was predicted using the
GLM. Goodness of model fit was evaluated by cross vali-
dation of root mean square error (RMSE) (Willmott &
Matsuura, 2005). Villages and farmland around residen-
tial areas were excluded from our prediction because
most of the automatic cameras were located in the wil-
derness area far away from them.

Human–tiger spatial and temporal niche
conflicts

In a spatial context, the underlying assumption is that
places with a high overlap between human and Amur
tiger occurrence are the areas expected to have the
highest chance of potential conflicts. We overlayed
the human occurrence probability raster and the Amur

tiger occurrence probability raster produced in ArcGIS.
We rescaled the predicted values in raster cells to
between 0 (low occurrence probability) and 1 (high occu-
rrence probability) and then multiplied the predicted
values of the resident and Amur tiger overlap to obtain a
map of conflict risk (Oliveira-Santos et al., 2021); risk was
reclassified as medium (0.25 ≤ coefficient < 0.36), high
(0.36 ≤ coefficient < 0.49), and focal risk area (coefficient
< 0.49). At the same time, in order to further reveal the
causes of human–tiger encounters, we drew a buffer zone
of 7-km radius around the points where female Amur
tiger occurrence was detected with cubs from 2014 to
2019. The radius of the buffer zone is equal to the daily
activity distance of Amur tiger (Goodrich et al., 2010) and
was superimposed on the conflict risk map.

We used kernel density estimation methods to ana-
lyze the temporal data collected for each species to obtain
daily activity patterns by species (Linkie & Ridout, 2011;
Ridout & Linkie, 2009). Temporal niche overlap coeffi-
cients, ranging from 0 to 1, were used between two species
to assess the temporal niche overlap between species at dif-
ferent times. Because local residents are rarely active in the
mountains during winter and because many cameras do
not work due to low winter temperatures, we only consid-
ered potential conflicts in spring (March–May), summer
(June–August), and fall (September–November). For the
kernel density analysis, we chose the D4 method for large
sample sizes (minimum sample size > 75), the D1 method
for small sample sizes (minimum sample size < 50), and
the D5 method for sample sizes from 50 to 75. CIs were cal-
culated using 10,000 bootstrap samples.

We make a reasonable classification of the
human–tiger conflict risk map based on the overlap value
and also find the time period with less overlap of
human–tiger activities based on the human–tiger activity
pattern to minimize the risk of human–tiger conflict.
Analyses were performed using the overlap package (Ridout
& Linkie, 2009) and the stats package (R Core Team, 2009).

RESULTS

Probability of Amur tiger occurrence

Using the RAI of the three ungulate species predicted by
the models (Appendix S1: Tables S2 and S3) and the
Maxent model results (Appendix S1: Table S4), we found
that the occurrence probability of Amur tiger was posi-
tively correlated with the RAI of wild boar, the probabil-
ity of occurrence of sika, and the distance to grazing
land. Amur tiger probability of occurrence was negatively
correlated with the RAI of roe deer (Appendix S1:
Tables S5 and S6). About 11.9% (584 km2) of Hunchun
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appeared to have high probability for Amur tiger occur-
rence above the threshold of 0.5 (Figure 2). Predicted
areas did not include residential areas.

Probability of livestock predation by the
Amur tiger

Among the 448 reported cases of Amur tigers preying on
livestock, the annual peak period occurred from May to
September (Figure 3a); the number was greatest in

2014–2016, with 109, 125, and 102 cases per year, respec-
tively (Figure 3b). The probability of Amur tiger preying
on livestock was negatively correlated with the RAI of
wild boar, the RAI of sika, the probability of occur-
rence of roe deer, and the distance to grazing land
(Appendix S1: Tables S5 and S7). Most of the high
probability areas were close to residential areas
(Figure 4). Large ungulate biomass at sites where
Amur tigers did not prey on livestock was significantly
greater than at sites where Amur tigers preyed on live-
stock (p < 0.001).

F I GURE 2 Probability map of Amur tiger occurrence based on Amur tiger occurrence points in Hunchun area, 2014–2019.
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Spatiotemporal human–tiger conflict risk

On a spatial scale, the risk coefficient for human–tiger
conflict ranged from 0 to 0.569 (Appendix S1: Table S8),
resulting in 851.88 km2 (17.39% of the Hunchun area) in
medium risk, 91.36 km2 (1.86% of the Hunchun area)
in high risk, and 2.24 km2 (0.05% of the Hunchun area) in
focal risk, the highest risk level (Figure 5). In areas where
Amur tiger cubs were found, the area of medium conflict
risk was 219.92 km2 (25.82% of the total medium
conflict area) and 39.44 km2 of high risk (43.17% of the total
high conflict risk area). Amur tiger cubs were found in nine
of the villages, and 10 were at risk of conflict (Figure 5).

Temporally, the overlap index of residents and Amur
tigers was 0.38 in spring, 0.37 in summer, and 0.33 in
autumn. During spring, the intersections of human–tiger
activity where Amur tiger activity was less than human
activity were 5:25 h and 15:35 h. The least activity
of Amur tiger was noted at 12:35 h. During summer, these
above intersections of human–tiger activity were 5:40 h
and 16:35 h, with the Amur tiger least active time 9:40 h,
and during autumn, the intersections of human–tiger
activity pattern were 5:55 h and 16:35 h, with the
least activity of Amur tiger noted at 9:28 h. We quartered
the difference in y values between each human–tiger time
intersections and the lowest peak of Amur tiger activity to
demarcate the different intensities of tiger activity. Hence,
the time period between the two points on the tiger activ-
ity line at y = 1/4 (ypeak – ytrough) + ytrough was the
recommended activity time for residents in the high-risk
area, corresponding to spring: 8:25 h–13:55 h, summer:
8:40 h–15:00 h, and autumn: 9:28 h–14:04 h. For
medium-risk areas, determined as the time period between
the two points at y = 1/2 (ypeak – ytrough) + ytrough, the

recommended activity time for residents was 7:25 h–14:35-
h, summer: 8:00 h–15:40 h, and autumn: 7:00 h–15:05 h.
For low-risk areas, determined as the full time period
between the two human–tiger activity intersections, the
recommended activity time for residents was
5:25 h–15:35 h, summer: 5:40 h–16:35 h, and autumn:
5:55 h–16:35 h (Figure 6).

DISCUSSION

Occurrence of Amur tiger driven by
ungulate prey

As with other large carnivores, the availability of prey is
one of the main drivers of tiger distribution and abun-
dance (Harihar et al., 2014; Petrunenko et al., 2016; Xiao
et al., 2018; Yang et al., 2019). This is particularly the case
for Amur tiger, where both Amur tiger and prey densities
are least within the species’ range. In this study, the rela-
tionship between the occurrence probability of Amur
tiger and ungulate prey further confirmed this hypothesis
(Figure 2). In terms of prey selection, previous research
of fecal diet analysis has revealed that wild boar is pre-
ferred, but sika, and especially roe deer, was avoided by
Amur tiger, relative to its availability (Bagchi et al., 2003;
Gu et al., 2018; Hayward et al., 2012). This is likely
because there is no significant difference in energy
expenditure between Amur tiger predation on large-sized
prey, such as wild boar and sika, and small-sized prey,
such as roe deer, but there is a large difference in energy
return. Hence, tigers appear to prefer prey species which
match their weight, similar to other solitary predators
(Carbone et al., 1999; Hayward et al., 2007).

F I GURE 3 Amur tigers preying on cattle in Hunchun region, 2014–2019. The number of cattle killed by Amur tigers (a) each month

and (b) each year.
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Amur tiger predating livestock due to
lower population of large ungulate

Tiger attacks on people and its predation on are persis-
tent from time immemorial (Tilson & Nyhus, 2009).
Today, as human activities continue to expand, livestock
often move into the forest to forage (Margulies &
Karanth, 2018), which greatly increases the likelihood of
livestock being predated and becoming an alternative
food source for wild carnivores (Karanth, Gopalaswamy,
et al., 2013; Karanth, Naughton-Treves, et al., 2013). We
found that the Amur tigers preyed on livestock in areas

where the population of wild ungulate RAI was low and
close to cow-grazing sites. Therefore, we speculate that
the lack of wild ungulate prey in these areas is the most
important reason for the Amur tigers preying on live-
stock and foresee continuous pressure on livestock as the
African swine fever continues to decrease populations of
wild boar (i.e., the main food for Amur tigers; Luskin
et al., 2023).

Previous studies found that the biomass contribu-
tion of livestock to the feeding habits of the Amur tiger
was much greater in Hunchun than in Russia. In spite
of this overestimation, 25% of the livestock they kill are

F I GURE 4 Probability map of Amur tiger killing livestock based on Amur tiger prey on cattle points in Hunchun area, 2014–2019.
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not eaten by Amur tigers, and in the 42% of the live-
stock killed, less than half of the carcass is eaten (Gu
et al., 2018; Wang et al., 2018). This situation seems to
be associated with human presence in the area causing
Amur tigers to abandon predating or feeding. Our
Amur tiger occurrence probability model reveals that
the Amur tiger is avoiding grazing areas, but if the
higher the abundance of the Amur tiger, the greater the
depredation of livestock as young or weak Amur tigers
are forced to be led into human-dominated landscapes
to find territory (Goodrich et al., 2011; Karanth &
Gopal, 2005).

The data we presented show a significant decline in
the number of cattle killed by Amur tigers since 2016.
This was also the time when the Northeast Tiger and
Leopard National Park implemented “two pilot projects”
to ban grazing in state-owned forests. It appears that
these pilot projects have not only reduced cattle depreda-
tion by Amur tigers but also the income of local residents
(Han et al., 2022). For the residents of the reserve, the
reduction in income may be largely due to the change in
the attitude toward the protection of the Amur tiger, and
if the residents are not compensated in time, they may
intent to hurt the Amur tiger due to hatredness (Karanth

F I GURE 5 Human–tiger conflict risk area map of Hunchun region.
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& Gopal, 2005). As such, holistic approaches are
required, including efforts to increase incomes from other
activities (e.g., plants and plant products, mushrooms,
ecological landscapes, and ecological services).

Spatiotemporal management of
human–tiger conflict

In Hunchun area, in addition to livestock predation, direct
encounters between humans and Amur tigers in the wild
cause conflict as has been reported in Russia (Goodrich
et al., 2011). Local residents are involved in rearing live-
stock and other food-producing activities such as picking
wild mushrooms or vegetables, which increase the possibil-
ity of direct encounters between humans and Amur tigers.
Thus, in order to protect the safety of humans and Amur
tigers and to prevent the occurrence of Amur tiger attacks,
it is necessary to identify the areas prone to conflict at the
landscape scale. Evidently, Amur tigers are predominantly
activein the morning and dusk; this activity pattern can be
better separated from human activities, which provides a
basis for further spatial and temporal zoning management.
Humans should avoid the activities of Amur tigers in time
and space, and give both sides enough space to survive, in
order to maximize long-term coexistence.

Based on the spatiotemporal analysis results above, we
developed recommendations for different risk areas: (1) For
high-risk conflict areas, human activities should be strictly
reduced or prohibited. If not, activities such as scientific
research, monitoring, or habitat management, should be car-
ried out in groups during the recommended time periods.
(2) For medium-risk areas, human activities should occur

during the recommended time periods and avoid acting
alone. (3) For low-risk conflict areas, various production
activities can occur, but it is best to do so during the
suggested time period (Figures 5 and 6). Such division of
spatiotemporal zones and corresponding recommendations
should be reviewed and revised as necessary, including
under circumstances of changing tiger populations and pres-
ence of female tigers with cubs. Areas where Amur tiger
cubs occur are the breeding grounds of female Amur tigers
which need to hunt prey more frequently to feed their cubs
(Goodrich et al., 2010), and hence, this may increase the risk
and danger of human–tiger encounters. Further, it is essen-
tial to remind that even during the periods when Amur
tigers are least active, there is still a small amount of activity,
and the chance of encounter between humans and Amur
tigers cannot be avoided entirely.

Finally, elsewhere in the Amur tiger range in Russia,
a tiger response team has been operating since 1999 in
order to cope with the conflict between Amur tigers and
humans. In the future, to learn from this experience,
technologies such as infrared cameras, vibration optical
fiber, anchor-free detectors (Liu & Qu, 2023), and other
equipment to monitor the protected area, and to timely
detect and deal with emergency conflict situations should
be utilized effectively, which ultimately requires the joint
efforts of local communities, governments, and wildlife
conservationists.

Conservation implications

To harmonize the coexistence of humans and large carni-
vores, there is an urgent need to understand the spatial

F I GURE 6 Human and tiger activity patterns during three seasons in Hunchun area. Red stars indicate the two human–tiger time

intersections and the lowest point of tiger activity. (a) Spring. (b) Summer. (c) Autumn.
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and temporal use of resources by large carnivores and
humans in the same landscape. Here, we found the
drivers of spatiotemporal conflicts between humans and
Amur tigers and revealed that the occurrence of the
Amur tiger is mainly driven by natural preferred prey,
that Amur tiger predation is associated with a lack of
large natural ungulate prey in the area, and that utilizing
different breadths and portions of the temporal dimen-
sion can mitigate risk of encounter and conflict. To
reduce human–tiger conflict, we put forward the follow-
ing recommendations: (1) The long-term and effective
recovery of the Amur tiger population first needs to
increase the local population of large ungulates as pri-
mary food, in turn reducing the predation of livestock by
the Amur tiger. This could be achieved by reintroducing
large preferred ungulates, supplementary feeding for
ungulates in winter, and regularly clearing ungulate
hunting traps (snares). (2) Formulate scientific and rea-
sonable cow-grazing and non-timber product collection
policies and improve management methods. This
includes limiting the grazing areas, returning cattle to the
cattle pen every night, and reasonably planning permit-
ted and prohibited grazing areas (Roberts et al., 2021).
(3) For different zones of human–tiger conflict risk, sci-
entific management of human activities should be
implemented according to the risk map, limiting the time
of human activities to when tigers are least active in an
effort to reduce the occurrence of human–tiger conflict.
(4) Set up a special emergency team to strengthen the
monitoring of human and Amur tiger conflict and to
reduce the possibility of direct encounters in high-risk
areas between humans and Amur tigers to the best extent
possible. This approach to spatiotemporal niche
partitioning can provide ideas, too, for conflict resolution
in other human-inhabited protected areas.
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