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enabling them to evolve in response to changing conditions 
and ensuring their continued existence. Without careful 
genetic management, the long-term survival of endangered 
species remains in jeopardy.

The Amur tiger, also known as the Siberian tiger (Pan-
thera tigris altaica), is one of the five remaining tiger sub-
species and serves as a keystone and umbrella species in 
East Asian ecosystems [5–7]. Genetic study has revealed 
that the extinct Korean tigers were part of the Amur tiger 
lineage [8]. Like other tiger subspecies, the Amur tiger has 
experienced significant population decline and range col-
lapse due to habitat loss, illegal hunting, and capture for 

Introduction

The genetic makeup of a species plays a critical role in its 
long-term survival by providing resilience against disease 
and environmental changes, and ensuring reproductive fit-
ness [1–3]. Small populations are particularly vulnerable to 
the detrimental effects of inbreeding, which can lead to an 
increased risk of decline and eventual extinction [4]. Con-
servation strategies must focus on preserving and enhancing 
genetic diversity through measures such as habitat protec-
tion, breeding programs, and genetic rescue operations. 
These efforts help maintain the adaptive potential of species, 
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Abstract
Background  The tiger population in Southwest Primorye is small and predominantly isolated from the main Sikhote-Alin 
population, which constitutes approximately 90% of the wild Amur tiger population. By 1996, this population declined to 
fewer than 10 individuals, but it has since grown and expanded into nearby habitats, now numbering over 50 individuals. 
Therefore, the regular genetic monitoring of this population is essential, as it has grown from a few founding members and 
remained geographically isolated.
Methods and results  Genetic diversity was assessed using nine heterologous microsatellite markers amplified from non-
invasively collected samples of 20 individual tigers. The Southwest Primorye tiger population exhibited moderate genetic 
diversity, with allelic richness (Na) at 3.67 and observed heterozygosity (Ho) at 0.63. Additionally, we detected a slight ten-
dency toward heterozygosity excess at several loci, with an overall negative FIS, which may be influenced by recent genetic 
admixture or subtle population structuring. comparative assessment between our study and Sugimoto et al. (2012) revealed 
a marginal increase in genetic diversity over time, suggesting improved genetic health of the population, potentially due to 
genetic exchange with other populations.
Conclusions  The significant growth and expansion of the Southwest Primorye tiger population into adjacent areas of North-
east China over the past two decades suggest a positive population trajectory. This modest increase in genetic diversity 
indicates a potentially favorable population condition. However, continuous genetic monitoring remains essential to track 
genetic trends, detect potential risks, and inform conservation strategies. This study highlights the need for ongoing evalua-
tions to ensure the long-term survival of the Amur tiger population in Southwest Primorye.
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economic gain [9, 10]. By the mid-20th century, it was esti-
mated that approximately 150 tigers remained in Manchu-
ria, with no more than 50 individuals in the Russian Far East 
[11, 12]. Currently, the population in Russia is estimated at 
about 750 individuals (including cubs) [13] and split into 
two groups: a larger group in the Sikhote-Alin Mountains 
and a smaller one in Southwest Primorye [14].

Despite its small size, the Southwest Primorye popula-
tion of Amur tigers holds high conservation importance. Its 
geographical proximity to China and the Korean Peninsula 
makes it crucial for the revival of tigers in these historical 
distribution areas [15] (Fig. 1). This population is predomi-
nantly isolated from the larger Sikhote-Alin population due 
to human development between Vladivostok and Ussuriysk, 
which presents a barrier to tiger dispersal and gene flow 
[16]. However, some individuals have managed to migrate 
between regions, indicating that the barrier is not entirely 
impassable [17]. In 2005, the Russian-Chinese East Man-
churian Amur tiger sub-population was estimated to include 
no more than 20 animals in total [18]. By 2015, this number 
had grown to 35 adults [19], and has continued to increase 
since. The gradual growth of this population, with more fre-
quent tiger sightings on the Chinese side, is largely attrib-
uted to effective conservation measures and governmental 
policies [20–22].

The small population size and limited genetic exchange 
with the larger Sikhote-Alin population necessitate peri-
odic genetic management of the Southwest Primorye tiger 
population to ensure its long-term viability, growth, and 
expansion. Despite this critical need, genetic studies on the 
Southwest Primorye population are limited due to its trans-
national distribution (Russia-China) and the lack of a univer-
sally accepted genetic methodology for global tiger studies. 
Between 2000 and 2019, three different studies monitored 
the Southwest Primorye tiger population using noninvasive 
samples and microsatellites over the periods of 2000–2004 
[23], 2012–2016 [13], and 2014–2019 [24]. Sugimoto et 
al. [23] and Ning et al. [13] used heterologous microsat-
ellites derived from domestic cats, while Jeong et al. [24] 
employed tiger-specific genomic microsatellite markers 
developed by Hyun et al. [25]. Although the observed (Ho) 
and expected (He) heterozygosity were consistent across all 
three studies, averaging around 0.6, the mean allelic rich-
ness varied, with values of 3.2 [23], 3.7 [13], and 2.6 [24]. 
As each study employed a different set of microsatellites, 
cross-study comparisons are challenging, making it diffi-
cult to determine whether this population has experienced 
an increase, decrease, or maintenance of genetic diversity 
over time.

The present study was designed to monitor potential 
fluctuations in genetic diversity over time in the tiger popu-
lation of Southwest Primorye in the Russian Far East. We 

amplified nine heterologous microsatellite loci using DNA 
from 20 tiger individuals sampled non-invasively between 
2014 and 2019 [24]. The findings were then compared with 
those of Sugimoto et al. [23], who sampled tigers from the 
same study area between 2000 and 2004, enabling a com-
parative assessment over approximately 15 years, a period 
spanning more than two tiger generations.

Methodology

Between 2014 and 2019, Jeong et al. [24] non-invasively 
sampled the tiger population in the Land of the Leopard, 
located at the southern tip of Primorsky Province in the 
Russian Far East. This area includes two specially protected 
areas: the Kedrovaya Pad Nature Reserve and the Land of 
the Leopard National Park. They identified 32 unique tiger 
individuals using ten polymorphic microsatellite loci. In the 
present study, we utilized DNA from 20 of these 32 tigers to 
amplify nine heterologous microsatellites. As no additional 
sampling efforts were required, no new permissions, per-
mits, or ethical clearances were needed.

The nine polymorphic heterologous microsatellites 
identified by Sugimoto et al. [23] were amplified using the 
M13-tailed primer method. In this cost-effective approach, 
the forward primer for each microsatellite primer set was 
designed with a 5′-tail containing the M13 sequence 5′-​C​A​C​
G​A​C​G​T​T​G​T​A​A​A​A​C​G​A​C-3′ [26, 27]. A third M13 primer, 
which carried a fluorescent label, bound to the forward 
primer during PCR amplification. Given that previous stud-
ies [13, 23, 24] used fluorescent dye-labeled microsatellite 
loci, we additionally fluorescently labeled two of the nine 
heterologous microsatellite markers (FCA94 and FCA224) 
and amplified them in a subset of samples to assess the 
impact of the M13 tailing method on our results.

The PCR reactions were performed in a 10 µL mixture 
composed of 5 µL multiplex master mix (QIAGEN Mul-
tiplex PCR Kit), 0.5 µL Q solution (QIAGEN, Hilden, 
Germany), 1.0 µL (10 pmol) primer mix, and 2 µL tem-
plate DNA. The PCR amplifications were checked on a 2% 
agarose gel, and positive amplifications were genotyped on 
a 3730XL genetic analyzer at NICEM Inc. (Seoul, South 
Korea) with a Genescan 500 LIZ internal size standard. Data 
calling was performed using GeneMapper v3.7 (Applied 
Biosystems, Foster City, CA).

To construct the genotypic profile, a multiple-tube 
approach was used for each sample. Initial triplicate PCR 
assays were conducted, followed by an additional 2–3 PCR 
assays for samples that failed to produce a consensus geno-
type in the initial step. The consensus genotype was con-
firmed under the following criteria: genotypes were accepted 

1 3

  264   Page 2 of 8



Molecular Biology Reports          (2025) 52:264 

when triplicates matched for homozygotes, or when at least 
two replicates matched for heterozygotes.

Micro-Checker version 2.2.3 [28] was used to detect 
the presence of null alleles. Hardy-Weinberg equilibrium 
(HWE) and linkage disequilibrium (LD) were assessed 
using Genepop version 4.7.5 [29] with Bonferroni correction 

applied [30]. The amplification success rate (ASR), defined 
as the ratio of successful amplifications to the total number 
of PCR attempts, and the genotyping success rate (GSR), 
defined as the ratio of observed consensus profiles to the 
total number of samples analyzed, were calculated for each 
amplified microsatellite locus. Genotyping errors, including 

Fig. 1  Amur tiger sampling sites and distribution
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locus, averaging 3.7 per locus (Table 1). The observed het-
erozygosity ranged from 0.47 to 0.85 (mean 0.63 per locus), 
while the expected heterozygosity ranged from 0.49 to 0.77 
(mean 0.63 per locus).

Inbreeding coefficients were calculated using microsatel-
lite data from eight loci, excluding FCA94, which was ana-
lyzed in only five samples. The overall mean FIS across all 
loci was slightly negative (-0.05575), ranging from − 0.652 
at FCA90 to 0.179 at FCA105 and FCA43 (Supplementary 
Table 2). The mean inbreeding coefficients across individuals 
were slightly negative for both Ritland (-0.0326) and Lyn-
chRd (-0.0408), while the mean values for TrioML (0.0957) 
and DyadML (0.1091) were positive (Supplementary Table 
3). These findings suggest a genetically diverse population 
with minimal inbreeding effects. Additionally, Factorial Cor-
respondence Analysis (FCA) revealed spatial differentiation 
of individuals along the primary axis, suggesting potential 
genetic structuring. This pattern is characterized by the for-
mation of closely associated clusters among some individu-
als, while others exhibit a more dispersed distribution (Fig. 2).

The genetic diversity estimates obtained in this study 
from tiger samples collected between 2014 and 2019 were 
higher than those reported for samples collected between 
2000 and 2004 [23]. Specifically, from 2000 to 2019, the 
mean allelic diversity increased from 3 to 3.7 alleles per 
locus. Similarly, the mean observed heterozygosity rose 
from 0.59 to 0.63, and the mean expected heterozygosity 

allele dropout and false alleles, were assessed using GIM-
LET version 1.3.3 [31]. Genetic diversity parameters, such 
as allele number and heterozygosity, were calculated using 
CERVUS version 3.0.7 [32]. Inbreeding within the popu-
lation was assessed using FSTAT version 2.9.4 [33], while 
individual-level inbreeding was analyzed with Coancestry 
version 1.0.1.11 [34] The Factorial Correspondence Anal-
ysis (FCA) was conducted based on allele frequencies to 
visualize genetic structure and identify population cluster-
ing [35].

Results

Eight of the nine loci were tested across all 20 samples, 
except for FCA94, which was tested with only five samples 
due to DNA depletion in the remaining samples during the 
experiments. The nine heterologous microsatellite mark-
ers amplified exhibited no deviation from Hardy-Weinberg 
equilibrium (HWE), and there were no signs of null alleles 
or linkage disequilibrium (LD) after Bonferroni correction. 
The microsatellite markers showed an average amplification 
success rate of 65.4% and a genotyping success rate of 95% 
(Supplementary Table 1). The allele dropout rate per locus 
ranged from 7 to 33%, with a mean of 19%, while the false 
allele rate per locus ranged from 0 to 8%, with a mean of 3% 
(Table 1). The number of alleles ranged from two to five per 

Table 1  Genotyping errors and genetic diversity of the Southwest Primorye tiger population using noninvasive samples collected between 2000 
and 2019 (na: number of alleles; Ho: observed heterozygosity; he: expected heterozygosity)
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94–100%, FCA 224–64%; Table  2). These observations 
strongly suggest that the use of M13-tailed primers, rather 
than DNA quality, influenced the genotyping error rate. 
However, we were unable to draw definitive conclusions 
about the comparative error rates between primers, as locus 
FCA 94 exhibited higher allele dropout with the fluores-
cently labeled primer, but locus FCA 224 showed higher 
dropout with the M13-tailed primer (Table 2).

Discussion

Over the past few decades, the tiger population in Southwest 
Primorye has been gradually increasing due to improved 
management strategies and enhanced landscape conser-
vation efforts. In 2022, snow footprint tracking identified 
58 tigers, including 12 cubs, within the Southwest Primo-
rye territory- an increase from 13 animals in 2005 and 27 

from 0.55 to 0.63 per locus. Interestingly, the mean geno-
typing error rates reported in our study (ADO – 0.19, FA 
– 0.03) were also higher than those previously reported 
(ADO – 0.05, FA – 0.01; [23]) using the same set of micro-
satellites and non-invasive samples. The higher genotyping 
error rates may have resulted from relatively poor quality of 
the extracted DNA or from the use of M13-tailed primers. 
The mean PCR amplification success rate in our study was 
65.4%, which is lower than the rates reported by Jeong et al. 
(2024), who achieved 84.8% for the ten polymorphic mic-
rosatellites used for individual identification and 89.4% for 
all 32 microsatellite loci tested during the initial screening. 
We further conducted a comparative assessment of M13-
tailed and fluorescently labeled microsatellites by amplify-
ing two loci (FCA 94 and FCA 224) in a sample subset. The 
results clearly suggest that M13-tailed primers have lower 
amplification success rates (FCA 94–79%, FCA 224–28%; 
Table  2) compared to fluorescently labeled primers (FCA 

Table 2  Comparative assessment of M13-tailed and dye-labeled microsatellite amplification

Fig. 2  Factorial correspondence analysis of genetic variation in 20 Amur tiger individuals
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Conclusion

Conserving the genetic diversity of the Southwest Primo-
rye Amur tiger population is vital for its long-term viability 
and potential southward range expansion. The Southwest 
Primorye population is relatively small and largely isolated 
from the main Sikhote-Alin tiger population, which repre-
sents nearly 90% of all Amur tigers, due to barriers created 
by human development. Given the small and isolated nature 
of this population, periodic studies are essential to evalu-
ate trends in genetic diversity and monitor changes over 
time. Such data is critical for developing informed conser-
vation strategies, including habitat connectivity and poten-
tial genetic rescue efforts. By prioritizing advanced genetic 
tools, we can better understand the genetic dynamics of 
the Amur tiger population, mitigate risks associated with 
genetic isolation, and enhance the effectiveness of conserva-
tion initiatives aimed at ensuring the survival of this iconic 
species in its natural habitat.
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in 2015 [36]. This rise in tiger numbers has facilitated the 
movement of tigers to nearby former territories in China, 
where more than 50 tigers are now distributed across the 
Laoyeling, Zhangguangcailing, Wandashan, and Lesser 
Khingan Mountains [37].

Effective genetic management is crucial for expanding 
populations, particularly those originating from a small 
initial group, as they are more vulnerable to fluctuations in 
genetic diversity due to factors such as the founder effect, 
genetic drift, population bottlenecks, selection pressure, 
inbreeding, gene flow, and the formation of sub-popu-
lations. Our comparative genetic assessment, spanning 
approximately 15 years and more than two tiger genera-
tions, provides valuable insight into how population growth, 
territorial expansion, and conservation measures have influ-
enced genetic diversity in Southwest Primorye. Given the 
average lifespan and breeding patterns of tigers, we do not 
expect any individual recaptures between this study and the 
prior one.

Our findings reveal a moderate level of genetic diver-
sity in the Southwest Primorye tiger population, with 
comparative analysis suggesting a slight increase between 
2000 and 2019 (Table  1). This marginal rise in genetic 
diversity may be attributed to gene flow from nearby 
populations or an improved ability to avoid inbreeding as 
the population expands. The former is more likely, given 
the overall negative FIS and subtle sub-structuring. Fur-
thermore, our observations align with previous genetic 
studies. Sorokin et al. (2016) reported genetic exchange 
between the Southwest Primorye population and the main 
population in the Sikhote-Alin Mountains. Additionally, 
Jeong et al. (2024) identified two haplotypes (Type A and 
Type G) in Southwest Primorye, with Type G individuals 
being geographically restricted to the northern part of the 
study area.

In this study, we used M13-tailed microsatellite loci due 
to cost constraints, as this method is more cost-effective 
compared to labeling each microsatellite forward primer 
with fluorescent dye. However, we observed a reduced PCR 
amplification success rate compared to Jeong et al. (2024), 
despite obtaining DNA from the same samples. Addition-
ally, we reported a higher mean genotyping error rate for 
the tested microsatellite loci compared to Sugimoto et al. 
(2012). The use of M13 as a label has been associated with 
decreased PCR efficiency, often necessitating additional 
amplification cycles [38]. Furthermore, extensive homology 
of the M13 sequence and the target genome can lead tonon-
specific amplifications, potentially introducing errors in 
genotyping analysis [39]. Therefore, future studies should 
either avoid the use of M13-tailed primers or apply with 
caution when necessary.
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