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Demographic loss, genetic structure
and the conservation implications
for Indian tigers

Samrat Mondol1, Michael W. Bruford2 and Uma Ramakrishnan1

1National Centre for Biological Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
2School of Biosciences, Cardiff University, Cardiff, UK

India is home to approximately 60 per cent of the world’s remaining wild

tigers, a species that has declined in the last few centuries to occupy less

than 7 per cent of its former geographical range. While Indian tiger numbers

have somewhat stabilized in recent years, they remain low and populations

are highly fragmented. Therefore, the application of evidence-based demo-

graphic and genetic management to enhance the remaining populations is a

priority. In this context, and using genetic data from historical and modern

tigers, we investigated anthropogenic impacts on genetic variation in Indian

tigers using mitochondrial and nuclear genetic markers. We found a very

high number of historical mitochondrial DNA variants, 93 per cent of which

are not detected in modern populations. Population differentiation was

higher in modern tigers. Simulations incorporating historical data support

population decline, and suggest high population structure in extant popu-

lations. Decreased connectivity and habitat loss as a result of ongoing

fragmentation in the Indian subcontinent has therefore resulted in a loss of

genetic variants and increased genetic differentiation among tiger popu-

lations. These results highlight that anthropogenic fragmentation and

species-specific demographic processes can interact to alter the partitioning

of genetic variation over very short time scales. We conclude that ongoing

strategies to maximize the size of some tiger populations, at the expense

of losing others, is an inadequate conservation strategy, as it could result in

a loss of genetic diversity that may be of adaptive significance for this

emblematic species.
1. Introduction
The Indian subcontinent is a globally important region for biodiversity, and its

tiger populations (Panthera tigris) represent 50–60 per cent of all those remaining

[1]. The tiger’s range has declined more than 50 per cent during the last three gen-

erations [2,3]; it now occurs in less than 7 per cent of its historical distribution.

Historical records [4] and genetic data [5] show that the recent demographic his-

tory of Indian tigers is characterized by population collapse owing to

anthropogenic habitat destruction and hunting. Tigers now persist in relatively

small populations (20–120 individuals) in India, which are often spatially iso-

lated [6]. These populations harbour 60–70 per cent of the species’s extant

genetic diversity [5], emphasizing their importance for future species recovery.

While mitochondrial genetic diversity and population differentiation in

modern Indian tigers seems high [5,7], the variation lost owing to population

decline in this region is unknown. In subspecies such as the Amur tiger,

human-induced population decline has left modern populations with very

low genetic variation [8,9]. Other subspecies, such as the Caspian tiger, pos-

sessed low genetic variation even in historical times [10]. Studies on other

apex predators have also revealed significant loss of genetic variation as a

result of acute population decline (e.g. wolf [11,12]; cheetah [13–15]; puma

[16,17]; Tasmanian tiger [18]). Additionally, historical presence/absence

models indicate a much higher degree of tiger habitat connectivity historically
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compared with modern times [19]. This loss of habitat conti-

nuity is expected to result in demographic isolation, an

increased genetic differentiation and a reduction in genetic

diversity owing to genetic drift.

Loss of genetic variation, while rarely posing the immediate

threats associated with demographic loss and environmental

stochasticity [20–23], can nevertheless ultimately compromise

populations and may lead to extinction [24–26]. Further,

since genetic variation is often geographically structured and

can be modified by species-specific behavioural patterns

[27,28], the effects of local extinctions on range-wide genetic

variation can exceed that predicted by population size change

alone, resulting in a non-additive loss of unique genetic variants

and an increase in genetic structure [29–31]. However, to

understand the impact of habitat loss not only on genetic vari-

ation, but also on its partitioning, knowledge of the time period

through which changes in habitat took place is important.

Historical collections provide important temporal and geo-

graphically referenced samples for such studies [32]. In the

case of Indian tigers, populations have undergone their stron-

gest declines over the last 200 years [5], and therefore museum

samples collected during the British colonial period in India

are relevant to study these processes.

A recent tiger survey led by the government of India has

asserted that the species is in recovery because numbers have

increased from 1400 to 1700 between 2009 and 2011 [33,34].

However, while populations may increase under certain

circumstances (e.g. the cessation or control of hunting), demo-

graphic recovery is only one indicator of long-term population

viability, and management goals that only aim to increase

numbers within modified landscapes and do not consider

gene flow are often inadequate [35]. Here, by analysing both

maternally and bi-parentally inherited marker data, we inves-

tigated (i) whether Indian tigers have lost genetic variation

through recent historical time, (ii) whether this loss of variation

can be explained by a decrease in population size alone and

(iii) whether the geographical partitioning of genetic variation

has changed during this period. Since we compared historical

and modern populations, our modern samples included most

extant tiger populations in the Indian subcontinent, while our

historical samples include populations where tigers have been

locally extirpated.
2. Material and methods
(a) Sampling
Historical Indian tigers were sampled from the Natural History

Museum, London and National Museum of Scotland, Edin-

burgh, and predominantly comprised specimens hunted prior

to 1950. Samples were mainly available from geographical

regions where tigers are now extinct (for example, Afghanistan,

Rajputana, Gujarat; see electronic supplementary material, table

S1 and figure S1). Fifty-three samples with associated geolocation

and dates (36 skulls and 17 skins) were analysed. Dried tissue,

nasal bones (turbinals) or small pieces of skin were collected

from skulls and skins. Each specimen was handled wearing

gloves, carefully sampled with separate sterile blades and

stored in a sterile vial. Samples were stored at 2208C until

processed.

For contemporary tigers, we used mitochondrial (mt)DNA

sequences (1263 bp, comprising up to four fragments) and microsa-

tellite data (10 loci) from all Indian samples analysed by Mondol

et al. [5] (GenBank accession numbers: EU661609–EU661691).
Twenty-four additional faecal samples were collected during

2009–2010 from five protected areas (see the electronic supplemen-

tary material, tables S2 and S3). Faecal samples were processed as

by Mondol et al. [36]. Seventy-seven mitochondrial and 112 micro-

satellite genotypes from individual tigers were used for comparison

with the historical samples in this study (see the electronic

supplementary material, tables S2 and S3).

(b) DNA extraction, PCR amplification and data
quality control

All DNA extractions were performed in an ancient DNA labora-

tory exclusively dedicated to the handling of museum samples

(Cardiff University), where no previous tiger work had been

conducted (details are provided in the electronic supplementary

material). To control for contamination issues commonly

associated with museum samples [37,38], stringent PCR amplifi-

cation and quality control measures were used. We amplified

four mitochondrial fragments (NADH5—482 bp, Cytb—450 bp,

NADH2—131 bp and control region—200 bp). Ten microsatellite

loci were amplified. Details on PCRs and data quality control are

provided in the electronic supplementary material.

(c) Data analysis
We used MICROCHECKER v. 2.2.3 [39] to identify possible null

alleles, large allele dropout and scoring errors owing to stutter

peaks. We quantified the genotyping error rate in our dataset

(both modern and historical) using the algorithm developed by

Zhan et al. [40]. This approach quantifies error by using the

entire dataset.

All related individuals were removed before STRUCTURE

analysis (relatedness estimated in ML-RELATE [41]).

Bayesian clustering was implemented using STRUCTURE v. 2.3.3

[42,43] and details are provided in the electronic supplementary

material. We assumed that the combined samples (historical and

modern) would reveal historical population structure. Admixture

was estimated using the Q-values (estimated proportions of ances-

try) calculated in STRUCTURE. We used Q . 0.75 as threshold for

assigning individuals to populations [44].

Summary diversity statistics and indices of genetic differen-

tiation (pairwise Fst for both mtDNA and microsatellites, and

AMOVA) were estimated using ARLEQUIN v. 3.1 [45], dividing

tiger populations according to cluster assignment results from

STRUCTURE. A median-joining network based on 1263 bp mtDNA

sequences for all modern and historical tiger samples was crea-

ted using NETWORK [46]. Additionally, TEMPNET [47] was used to

create a parsimony network to display sequence data in a hetero-

chronous context. Subsampling was conducted to investigate

effects of sample size (details are provided in the electronic

supplementary material).

Coalescent simulations [48] allow the modelling of population

genetic data and have been extensively used to test hypotheses of

demographic history. In association with approximate Bayesian

computation (ABC) approaches, they have been used to estimate

parameters such as population size before and after demographic

bottlenecks and the timing of such declines. Simulations based

on modern samples alone necessarily assume that populations in

the past and those present today at a specific location are synon-

ymous, and hence ignore the possibility of population extinction

or replacement. Serial coalescent models [49], however, allow

incorporation of genetic data from different time points in the

past. Such models result in a better ability to detect population

decline [50].

We used serial coalescent simulations and an ABC approach

(BAYESSC [51]) to estimate the time of onset of population decline

for Indian tigers, and aimed to estimate three parameters: current

(modern) effective population size, time of population decline

http://rspb.royalsocietypublishing.org/
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and extent of population decline. The extent of decline is quanti-

fied as a ratio of the historical effective size to the current

effective size. The ABC framework consists of simulating thou-

sands of gene genealogies according to values chosen from the

prior distributions for the parameters of interest. The observed

and simulated data were compared against each other by deter-

mining the distance between a vector of summary statistics

calculated from each dataset. The 0.001 percentile of the simu-

lated parameters with the smallest distances were used to

estimate the posterior distribution of the parameters of interest.

Details of simulations (prior distributions, summary statistics

used and rejection criteria) are provided in electronic supple-

mentary material for both mtDNA and microsatellites. For the

mitochondrial DNA dataset, we ran simulations for two datasets:

(i) Indian subcontinent-wide tigers and (ii) north Indian

(Terai and semi-arid regions) tigers (see figure 1; electronic

supplementary material, tables S1 and S2 for sample details).

Rejection was based on observed summary statistics for

mtDNA data from the Indian subcontinent and the north

Indian region, respectively.

For the microsatellite data, we conducted ABC analyses

only for summary statistics based on modern and historical

north Indian tigers (see figure 1; electronic supplementary

material, tables S1 and S2 for sample details), because the

sampling for historical samples from peninsular India was

relatively poor.
3. Results
(a) Amplification success
Of the 53 museum samples collected during this study, we

could generate mtDNA (1263 bp) and microsatellite data

(eight loci) from 36 and 25 samples, respectively (see the
electronic supplementary material, table S1). Sequences were

submitted to GenBank (accession numbers: JN786601–

JN786684). Individual amplification success for mtDNA and

microsatellites are provided in detail in the electronic

supplementary material (tables S5 and S6). Loci FCA230 and

FCA232 had low amplification success on museum samples

and were removed from the analysis. Although no null alleles

were present in our modern samples, FCA090 and FCA628

showed evidence for null alleles in the historical samples.

Analysis of genotyping error rates [40] revealed a 0.5 and 1.7

per cent allelic dropout rate (with no false alleles) for

modern and historical samples, respectively (see the electronic

supplementary material, table S4). Overall, our analysis

showed a mean per-genotype error rate of 5 � 10–6 and 1 �
10–3 from modern and historical samples, respectively, corre-

sponding to less than one erroneous multilocus genotype for

both museum (0.8) and modern (0.01) microsatellites.
(b) Historical genetic variation
For mitochondrial DNA, our results reveal that Indian tigers

historically possessed a substantial number of previou-

sly undetected haplotypes when compared with modern

samples (figure 2a). Historical samples showed 25 haplo-

types compared with 36 haplotypes found in modern tigers

(figure 2a, table 1), with only four historical haplotypes

being found in modern tigers (figure 2b), indicating a

substantial loss and change of variation through time. Resam-

pling confirmed that this inference was robust to lower

historical sample sizes (table 1).

Analyses with eight nuclear microsatellites did not recapi-

tulate the loss of mitochondrial genetic variation. When

http://rspb.royalsocietypublishing.org/
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Table 1. Genetic diversity in modern and historical samples.

modern samples historical samples
resampling simulation
(average of 1000 runs)

mtDNA (1263 bp) number of haplotypes 36 25 17 (13,20)

microsatellites

(eight loci) [six loci]

no. alleles (s.d.) 15.37 (2.774)

[15.16 (2.6)]

6.25 (1.66)

[6.66 (1.3)]

11.827 (8.95 – 15.04)

allelic size range (s.d.) 37 (7.17)

[38.66 (6.2)]

16.75 (8.06)

[19.33 (6.07)]

29.45 (26.5 – 32.5)

expected heterozygosity (s.d.) 0.85 (0.03)

[0.84 (0.03)]

0.748 (0.07)

[0.73 (0.07)]

0.85 (0.851 – 0.856)

peninsular India semi-arid Terai northeast

peninsular India semi-arid Terai northeast

(a)

(b)

Figure 3. Clusters indicated by the program STRUCTURE, based on eight microsatellite loci, for (a) modern (n ¼ 57) and (b) modern and historical (n ¼ 82) tigers.
(Online version in colour.)
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combined, all modern samples showed a higher number of

alleles (NAModern ¼ 15.37 (2.774), NAHistorical ¼ 6.25 (1.66)),

allelic size range (SizeModern ¼ 37 (7.17), SizeHistorical ¼ 16.75

(8.06)) and observed heterozygosity (Ho Modern ¼ 0.53 (0.08),

Ho Historical ¼ 0.43 (0.08)), when compared with historical

samples (table 1). Resampling confirmed that lower genetic

variation in historical samples was not simply owing to

lower sample size, and the removal of the loci with inferred

null alleles from the dataset did not change this pattern

(see table 1). Because historical and modern sampling was

more comparable for the north Indian region, we also com-

pared summary statistics for this region. This comparison

revealed that historical and modern north Indian tigers

had similar numbers of alleles (NAModern-NI ¼ 7.28 (1.76),

NAHistorical-NI¼ 6 (1.35)) and observed heterozygosity

(Ho Modern-NI ¼ 0.668 (0.11), Ho Historical-NI ¼ 0.732 (0.09)) for

seven loci.

(c) Population structure in current and historical tigers
To explore changes in population structure between historical

and modern tigers, we analysed structure in historical and

modern tigers versus modern tigers alone. STRUCTURE

HARVESTER indicated that K ¼ 3 was the most probable
number of clusters for modern samples. Peninsular India

(comprising Western Ghats and Deccan Plateau) and north-

east India samples formed one cluster, the semi-arid region

formed a second cluster and the Terai landscape formed the

third. Surprisingly, when modern and historical samples

were taken together two clusters were inferred. Peninsular

India and northeast India samples formed one cluster,

while north Indian samples formed the second, suggesting

a recent increase in genetic differentiation (figure 3). Inference

of three clusters for modern samples and two clusters for the

modern and historical samples did not change when we

omitted northeast (modern and historical) samples from

this analysis.

Analysis of molecular variance (table 2) revealed that

population differentiation has approximately doubled for

both mitochondrial DNA and microsatellites in modern

tigers, suggesting a substantial increase in genetic differen-

tiation in recent times. Including northeast samples did not

change the results.

(d) Simulating demographic history of Indian tigers
Our simulations support a recent population decline

(MLEIndian subcontinent ¼ 45 years (16, –160; 5–95th percentile),

http://rspb.royalsocietypublishing.org/
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MLEsemi-arid Terai ¼ 100 years (30–440)) of high magnitude

(MLEIndian subcontinent ¼ 34-fold (21–91), MLEsemi-arid Terai ¼

10-fold (5–59); figure 4a–f ). In both Indian subcontinent-

wide and regional analyses, the current effective size was

estimated to be relatively high (MLEIndian subcontinent ¼

3650 (2110–9170), MLEsemi-arid Terai¼ 3610 (2620–17 800);

figure 4a–f). We ran the final simulations at a mutation rate of

0.015/bp/106 years since initial simulations indicated this to

be the most probable estimate. Overall, the simulations fitted

the observed data better for the north Indian tiger dataset

(delta ¼ 0.563) compared with the Indian subcontinent-wide

dataset (delta¼ 1.495).

Rejection analyses and posterior distributions for the

microsatellite data based on an average-across-loci approach

resulted in lower delta values (0.054927; figure 4i), indicat-

ing better fit than when posteriors were combined across

loci (delta between 0.1 and 0.2; electronic supplementary

material, figure S1).

Figure 4g–i reveals a signature of population decline,

as indicated by the microsatellite data for tigers from the

semi-arid and Terai regions. The magnitude of decline

(MLEsemi-arid Terai¼ 26.5-fold (8–170)) was higher than that

suggested by mitochondrial DNA (MLEsemi-arid Terai¼

10-fold), while the current effective size (MLEsemi-arid Terai¼

1330 (450–3910)) estimate was lower (MLEsemi-arid Terai¼

3610). The microsatellite data did not, however, have sufficient

power to detect the timing of this decline. MLE for mutation

rate was 3 � 1024. Analysis based on separate loci and then

combining posteriors revealed qualitatively similar results

(see the electronic supplementary material, figure S1), with

a relatively high magnitude of population decline (MLE¼

17.0-fold), while the effective size (MLE¼ 700) was lower

than that estimated above.
4. Discussion
(a) Tigers have recently lost mitochondrial, but not

nuclear genetic variation
Here, we assessed historical genetic variation for Indian

tigers based on samples from areas where tigers have now

been extirpated. Comparison of mitochondrial DNA for his-

torical and modern samples reveal that a large number of

haplotypes present historically in India have been lost.

Apart from a decrease in genetic variation per se, only 7 per

cent of the historical mitochondrial haplotypes are represen-

ted in the contemporary samples (4 of 57; figure 2b).

MtDNA is maternally inherited, and ecological studies on

tigers reveal that females have smaller home ranges to

males and that dispersing females tend to establish their ter-

ritory close to their mothers [52]. The apparent loss of

mitochondrial haplotypes could be caused by a combina-

tion of sex-biased philopatry and our historical sampling

(mainly in regions where tigers are now extinct) since we

would expect regions to feature maternal genotypes that

characterize them. Loss of habitat would be expected to

disproportionately affect females (and their haplotypes)

that represented those extirpated regions. While several

studies suggest a decline in mitochondrial haplotype diver-

sity in other taxa (e.g. birds: loggerhead shrike [53];

mammals: Scandinavian wolf [11], Arctic fox [54]), we

could not find examples of studies where apparent haplotype
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turnover between historical and modern samples is so

high. In addition to sampling effects, this could be because

we sequenced a relatively long mitochondrial segment,

revealing high haplotype diversity in historical as well as

modern samples.

In contrast, across the Indian subcontinent, we found a

different pattern for microsatellites. Modern tigers showed

higher genetic variation than historical tigers. One expla-

nation could be an inherent dissociation in genetic diversity

between nuclear and mitochondrial DNA in tigers. However,

this is unlikely because AMOVA indicates that genetic struc-

ture has approximately doubled for both marker types in

modern samples. Yet, because our sampling inclu-

ded relatively few historical samples from peninsular India,

inclusion of more individuals from this region could

change the result. Museums skins are often sampled from

regions under the heaviest hunting pressure [38], and a corol-

lary of this observation is that historical sampling from extant

populations can be much lower—as was the case for the

Natural History Museum’s tiger skin collection. However,

while our modern and historical sample sizes are not com-

parable for peninsular India, they are comparable for north

India (see figure 1, semi-arid and Terai regions), and here

genetic variation (measured as heterozygosity and allelic

variance) was lower for modern tigers. The results for the

north Indian region therefore suggest that increased historical

sampling from peninsular India might change our results.

Additionally, several studies on historical genetic variation

reveal that despite major bottlenecks, genetic variation is

often comparable between modern and historical samples

(e.g. fisher [55]; otter [56]; right whale [57]), while some

studies reveal a relatively moderate loss of genetic variation

(Scandinavian wolf [11]; puma [16,17]).
(b) Tiger population structure has increased
Our most striking result is an increase in population struc-

ture in Indian tigers since historical times. This inference is

supported by structure analyses (figure 3) and AMOVA

(table 2), which infer the existence of fewer populations

when historical and modern samples are combined (for

microsatellites) and an increase in mitochondrial structure

for modern populations. The difference between AMOVA

patterns for mtDNA and microsatellites could reflect the

lower effective size for mtDNA, allowing differentiation to

accumulate more rapidly [27]. Conflicting patterns for

mtDNA and nuclear DNA are common for mammals with

female philopatry and male-biased dispersal [28]. In contrast

to females, male tigers have large home ranges and are

capable of dispersing up to 280 km [58].

Changes in population structure have been observed over

time scales of thousands of years for large species such as

brown bears [59] and other mega-herbivores during the

Pleistocene [60] at continental scales. A few recent studies

[17,55,61] have demonstrated changes in population structure

between historical and modern populations. However, all

have been relatively limited in their geographical scale, and

have only investigated microsatellite genetic variation. Our

results are especially striking given the magnitude of increase

in population structure evidenced both from mitochondrial

and nuclear markers, given the short time scale over which

these effects are observed.
(c) Both mitochondrial and nuclear simulations suggest
tiger population size decline

Our coalescent simulations for mitochondrial DNA support a

relatively recent population decline (figure 4a–f ). The rela-

tively high estimates of current effective size could be

owing to the high population structure within both the

Indian subcontinent and north India. Estimates of the

timing of population decline, however, appear to be slightly

older for north Indian tigers and could suggest a relatively

older human impact in north India. Although historical

reports indicate massive commercial forest logging by the

British Empire for railway expansion [62] and post-Indepen-

dence deforestation for agricultural lands [63] during the

last 200 years, human densities have always been high in

the fertile Gangetic plains and Terai landscape. Historical

hunting records also suggest large-scale tiger hunting by

Mughal rulers 500 years ago [4] in this landscape. Overall,

the timing of decline as suggested by mitochondrial DNA simu-

lations that incorporate historical data are more recent than

those suggested by earlier results (based only on modern micro-

satellite data from peninsular India) [5]. This could be (a)

because the current models assume a population bottleneck,

while earlier models assumed gradual decline [5] (for a simi-

lar-sized population decline, population bottleneck scenarios

will appear more recent when compared with gradual decline

scenarios), or (b) because our historical samples are mostly

more recent than 100 years ago. As a result, our statistical

power to investigate demographic change is highest for the

‘time window’ corresponding to the last century [32].

Additionally, ABC and serial coalescent simulations for

microsatellite markers reveal a population decline for north

India (semi-arid and Terai region; figure 4g–i). A previous

study of tiger demographic history [5] suggested a population

decline in peninsular tigers based on microsatellite data. Rejec-

tion algorithm parameter estimation based on our north India

data suggests that the magnitude of population decline might

have been higher in the semi-arid and Terai regions (26-fold

versus 10-fold). Using historical samples did not improve our

ability to date this population decline. It is possible that there

were multiple declines, and our approach was not able to

detect multiple events; further simulation might provide

insights into this problem.

Several studies using historical samples have suggested

changes in effective size (see [38] for review). However, to

our knowledge, ours is the first to use ABC on both mitochon-

drial and microsatellite data to better understand the timing

and magnitude of population decline. While these approaches

have been applied extensively to ancient genetic data (see [32]

for review), our study broadly demonstrates the power of ABC

analyses for recent time scales. Our results also suggest that at

historical time scales, our microsatellite data may not provide

enough power to investigate timing of decline. If this is true

generally, it might be the reason several microsatellite datasets

comparing modern and historical samples do not show clear

demographic signatures.
(d) Implications
The increased population structure in modern tigers has con-

servation implications. First, Lorenzen et al. [60] have shown

that increased population structure correlates with extinction,

suggesting that the trends we observe represent a conservation

http://rspb.royalsocietypublishing.org/
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‘red flag’. Second, the broad ‘populations’ our analyses suggest

(from historical and modern data) can be used to guide man-

agement. Our results will help delineate multiple protected

areas falling within the same population. Finally, our results

suggest that semi-arid tigers are under considerable threat

from isolation, and the two remaining populations should be

monitored in future conservation efforts.

Genetic variation can be crucial for species survival and

adaptation to environmental change [64], and its judicious

management is now required in the Convention on Biological

Diversity’s 2020 targets [65]. Although recent studies demon-

strate that Indian tigers retain the highest proportion of the

species’s genetic variation [5], this study demonstrates that

some components of that genetic variation have been lost,

and what remains is now subdivided. Current conservation

efforts focus on numbers alone (e.g. [3,66]), while others

suggest the importance of maintaining connectivity [67].

Our results suggest that in order to enhance conservation

efforts seeking to halt the loss of genetic diversity for this

culturally valuable species, it is critical to maintain within-

population variation, as well as increasing population
connectivity. Current conservation initiatives discuss main-

taining connectivity at a landscape level [66]. However,

maintaining genetic variation will require population connec-

tivity at much larger spatial scales (e.g. within peninsular

India). Maintaining connectivity in regions with high habitat

fragmentation (such as south and southeast Asia [68]) is com-

plex. However, whether conservation initiatives at such large

scales (potentially involving multiple countries) can be

sustained could determine the future survival of tigers.
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