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A B S T R A C T

Sumatran tigers (Panthera tigris sumatrae) are a critically endangered carnivore restricted to the island of
Sumatra, and like many other large mammals on the Indonesian archipelago, they are threatened by high levels
of poaching and widespread habitat degradation. Here, we conduct the first range-wide assessment of Sumatran
tiger genetics using scat surveys and show that the wild population retains levels of genetic heterozygosity
comparable to mainland tigers. However, the population also exhibits signs of subdivision due to the un-
precedented rates of deforestation and land conversion in the last 30–40 years. The fact that this subspecies
retains such levels of heterozygosity despite high rates of habitat loss and increasing isolation suggests a form of
genetic extinction debt with an elevated risk of extinction if no action is taken within the next 30–100 years (see
Kenney et al., 2014). However, the inherent time delay in extinction debt provides opportunities for con-
servation if habitat quality can be improved and connections between existing population fragments can be
made. Our study highlights the importance of genetic studies for providing baseline information to improve the
population management of highly threatened carnivore species. Mitigating further habitat degradation and
expansion of oil palm and other cash crops in this region would improve the viability not only of Sumatran tiger
populations, but of other threatened large mammal species as well.

1. Introduction

Sumatra supports a disproportionately high level of global biodi-
versity. There are 5 bioregions on the island (freshwater swamp, low-
land rainforest, montane rainforest, peat swamp, and tropical pine
forest), that support up to 200 species of mammals and 580 species of
birds, including some that are extinct or virtually so elsewhere in
Indonesia, such as the rhino, elephant, and tiger (Whitten et al., 2000;
Wikramanayake et al., 2002). Much of this biodiversity is at risk due to
vast areas of primary forest (up to 0.38million hectares per year) being
cleared for timber products or converted to other land uses such as
agriculture (e.g. coffee, rubber), oil palm, and Acacia mangium tree
plantations (Margono et al., 2012; Sodhi et al., 2004; Stibig et al.,
2014).

Much of the land clearance began in southern Sumatra in the 1970s
when the Indonesian government introduced a transmigration scheme
to relocate people from other islands in the archipelago (Imbernon,
1999). It is now home to nearly 51 million people spread across 10
provinces (BPS Statistics Indonesia, 2016), and it is estimated that be-
tween 1969 and 1993 up to 8 million people relocated and cleared

1.7 million hectares of lowland forest for settlements and agricultural
smallholdings (Barber and Schweithelm, 2000; Gaveau et al., 2009a).
Much of this degraded forest was converted to industrial timber estates
and oil palm plantations in the early 2000s, and with no more acces-
sible lowland forest in south Sumatra, attention has now turned to the
peat swamp forests of east Sumatra (Margono et al., 2014).

It is estimated that ~70% of Sumatra's primary lowland forest has
already been lost and this trend is set to continue as Indonesia aims to
meet much of the global demand for palm oil, pulp, and timber pro-
ducts (Geist and Lambin, 2002; Kinnaird et al., 2003; Suyadi, 2010).
With net returns of up to $13,000 per hectare of tropical timber or oil
palm there are many commercial barriers to conserving the remaining
primary habitat (Wilcove et al., 2013).

Tiger conservation, like that of rhinos and elephants, poses a diffi-
cult challenge in this context as they require a large amount of space,
have a tendency towards conflict with people in secondary forest or at
protected area boundaries, and are under constant threat from poaching
due to their commercial value (Linkie et al., 2018). The main remaining
populations of these species are therefore located in a few large pro-
tected areas of primary lowland or montane forest (Wibisono et al.,
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2011).
Current estimates put the global tiger population at 3000–4000

individuals. Sumatra is one of three regions combined (including India
and Russia) containing ~80% of remaining tiger habitat with a
Sumatran population of ~500 tigers (Tilson et al., 1993; Linkie et al.,
2008a; Goodrich et al., 2015). The Sumatran tiger (Panthera tigris su-
matrae) is recognized as a distinct subspecies due to its unique location,
genetics, and morphological differences (Cracraft et al., 1998;
Kitchener, 1999; Hendrickson et al., 2000; Luo et al., 2004; Kitchener
and Yamaguchi, 2010; Wilting et al., 2015). It also represents the last
remaining population of Sunda tigers since the Java and Bali subspecies
are now extinct (Xue et al., 2015).

Continued land conversion across the tiger's range has created a
patchwork of primary forest (lowland, montane or peat swamp), sec-
ondary forest, and human disturbance that prompted the creation of
Tiger Conservation Landscapes (TCLs), and more recently Source Sites,
which overlap with the distribution of highly threatened species such as
the Sumatran rhino, Asian elephant, and Sumatran orangutan
(Sanderson et al., 2006; Walston et al., 2010; Wich et al., 2016). Al-
though tigers can inhabit a broad range of forest types, abundance or
occupancy rates are highest in areas of low human presence and in-
frastructure (Carroll and Miquelle, 2006; Johnson et al., 2006; Harihar
and Pandav, 2012; Sunarto et al., 2012; Hebblewhite et al., 2014).
Previous studies have shown that tigers mostly require a suitable prey
base and good ground cover for hunting to persist, even in degraded
forest (Linkie et al., 2008b; Smith, 2009; Sunarto et al., 2012). Desig-
nation of these large conservation areas was therefore intended to
protect sufficient habitat and prey, free from human threats, to main-
tain self-sustaining tiger populations. Sumatra holds 12 TCLs and 4
Source Sites covering up to 88,000 km2 (Wibisono and Pusparini,
2010), and these largely overlap with protected area boundaries. Here
we use genetic data obtained from an island-wide scat survey to explore
how disruption of the once contiguous forest on Sumatra has affected
this last Sunda tiger subspecies.

2. Material and methods

2.1. Sample collection

Fecal samples (scats) were collected from nine different field sites
across Sumatra (Fig. 1a, Table A1). Samples were collected during
dedicated scat collection surveys or opportunistically during population
monitoring studies prior to this study. Fresh samples were also obtained
from a facility holding wild tigers captured following conflict with rural
communities. Scat surveys were conducted in a range of habitat types
(montane, lowland, and production forests), and sampling transects
followed animal trails and logging routes in high tiger density areas
identified from camera trap survey data (unpublished results). Field
teams covered one transect per day and each route was sampled just
once with teams instructed to collect all fecal samples likely to have
been deposited by a tiger based on size and appearance. Each sampling
period lasted for an average of 2 weeks. We also tested the use of a
detection dog in 3 sites (Way Kambas NP, Kerinci Seblat NP, and Batang
Hari protection forest) using a 2-year old, male, Labrador Retriever
from Bogor, West Java. The dog was trained over 3 weeks by an ex-
perienced dog handler to recognize the scent of tiger scats using sam-
ples from captive individuals. Dog surveys were conducted alongside
the field teams with 20-minute work periods alternating with 10-
minute rest breaks.

2.2. Laboratory methods

Each sample was initially preserved with silica gel beads in the field
then transferred to ≥96% ethanol once received in the laboratory.
Extractions were performed using 2–3mm scrapings taken from the
outer surface of each scat. The QIAamp DNA stool mini kit (Qiagen) was

used for all extractions with some modifications (Table A2). A
NanoDrop spectrophotometer (Thermo Scientific) was then used to
quantify the DNA concentration for each sample. A tiger-specific
Cytochrome b primer (Wetton et al., 2004) was used to identify positive
tiger samples. Two PCRs were performed for each sample to confirm a
positive result, indicated by a single PCR product of ~165 bp. PCRs
were performed in 10 μl reaction volumes containing 5 μl Qiagen
Multiplex PCR mix, 0.3 μM forward and reverse primers, 0.2 μl
(10mgml−1) BSA, and 1.2 μl fecal DNA. PCR cycling conditions were
as described by Driscoll et al. (2009) and PCR products were visualized
on a 2% agarose gel with 1% ethidium bromide. Sex identification was
performed using a felid-specific zinc finger primer pair (Pilgrim et al.,
2005). Sex was determined by a single PCR product for females
(~163 bp) and 2 products for males (~160 and 163 bp). PCR reactions
were performed using a 10 μl reaction volume containing 5 μl Qiagen
Multiplex PCR mix, 0.3 μM fluorescent labelled forward primer, 0.3 μM
reverse primer, 0.5 μl (10mgml−1) BSA, and 3 μl fecal DNA. PCR cy-
cling conditions were: 95 °C for 15min, 45 cycles of [94 °C for 30 s,
56 °C for 1min, and 72 °C for 30 s], followed by 72 °C for 10min.
Fragment sizes were determined by capillary electrophoresis on an ABI
3130 genetic analyzer (Applied Biosystems).

Genotyping was performed using 24 fluorescent labelled micro-
satellite loci (Luo et al., 2004; Table A3). Loci were amplified in pairs in
10 μl reaction volumes containing 5 μl Qiagen Multiplex PCR master
mix, 0.2 μM forward and reverse primers, 0.5 μl (10mgml−1) BSA, and
2 μl fecal DNA. PCR conditions were 95 °C for 15min, 20 cycles of
[94 °C for 15 s, 55 °C for 15 s and 72 °C for 30 s], followed by 35 cycles
of [89 °C for 15 s, 55 °C for 15 s and 72 °C for 30 s], then a final ex-
tension step of 60 °C for 90min. Microsatellite allele sizes were de-
termined with GeneMarker software (SoftGenetics LLC) and allele bins
for each locus were confirmed with Tandem v1.08 (Matschiner and
Salzburger, 2009). Consensus multilocus genotypes were generated
using a multi-tubes approach (Taberlet et al., 1996). An allele had to
appear twice to be accepted as a true allele; a heterozygote genotype
was provisionally accepted after 3 positive PCRs and a homozygote
provisionally accepted after 7 positive PCRs. Shaza (Macbeth et al.,
2011) was then used to determine the number of unique genotypes,
while genotyping error rates and probability of identity (PISIB) were
estimated with Gimlet v1.3.3, Micro-checker v2.3.3, Pedant v1.0, and
MicroDrop (Johnson and Haydon, 2007; Valière, 2002; van Oosterhout
et al., 2004; Wang et al., 2012). Shaza uses a likelihood test to distin-
guish between 3 different types of genotype match: (i) false matches in
which different individuals have the same genotype (shadows), (ii) false
non-matches that represent the same individual with different geno-
types due to genotyping error, and (iii) phantoms that are true matches
rejected because of insufficient power. However, Shaza is not able to
distinguish duplicated genotypes (i.e. potential recaptures of the same
individual) from related individuals, so we used Colony v2.0.1.1 (Jones
and Wang, 2010) to estimate the pairwise probability of individuals
being full- or half-sibs.

2.3. Population genetics

Genepop v4.0 (Raymond and Rousset, 1995) was used to test for
Hardy-Weinberg equilibrium. Observed and expected heterozygosity
were estimated using GenAlEx v6.4 (Peakall and Smouse, 2006). Un-
biased expected heterozygosity was also calculated to account for small
samples sizes at each locus. Rare alleles with a frequency< 0.05 were
also removed from the dataset to minimize the impact of genotyping
errors and to obtain a conservative measure of diversity. Effective po-
pulation size was estimated with NeEstimator v2 (Do et al., 2014) using
a linkage disequilibrium method accounting for sampling error and
with minimal allele frequencies set to> 0.05. We tested for isolation-
by-distance using a regression between Rousset's genetic differentiation
measure a(r) and the logarithm of least cost distances ln(r) as im-
plemented in SPAGeDi v1.3 (Hardy and Vekemans, 2002). Least cost
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distances were estimated between individual sample locations using
human footprint data from the Last of the Wild v2 (Sanderson et al.,
2002) as our landscape map. Distances were computed in ArcView 3.1
with the Pathmatrix v1.1 extension (Ray, 2005). The inverse of the
regression slope was then used to estimate neighborhood size, a mea-
sure of effective population size based on the distribution of individuals
within a given area (Wright, 1946; Rousset, 2000). We also used Gen-
AlEx to test for spatial autocorrelation using 50 km distance classes up
to a total distance of 1550 km using 9999 random permutations and
10,000 bootstraps (Peakall et al., 2003).

2.4. Population structure

We defined four separate regions to coincide with the current des-
ignation of Tiger Conservation Landscapes and associated protected
areas: 1. North - Ulu Masen/Gunung Leuser ecosystem, 2. West - Kerinci
Seblat NP and Batang Hari protection forest, 3. East - Tesso Nilo NP,
Bukit Tigapuluh NP, Kerumutan wildlife reserve, and Berbak NP, and 4.
South - Way Kambas NP (Fig. 1b). Regional differentiation was tested
using pairwise values of θw (Weir and Cockerham, 1984) computed in
Genepop and a locus-by-locus AMOVA implemented in Arlequin v3.1
(Excoffier et al., 1992, 2005) using 19 microsatellite loci and 16,000
permutations. We then used BayesAss v1.2 (Wilson and Rannala, 2003)
to estimate recent rates of gene flow between the four defined regions
(North, East, West, and South).

Analysis of population structure with no a priori grouping was
performed using Structure v2.3.3 (Pritchard et al., 2000), Tess v2.3.1
(François et al., 2006), and Geneland (Guillot et al., 2005) (Table A5).

Structure is the most commonly used method for population structure
analysis but it can be affected by unequal sample sizes between popu-
lations and the presence of related individuals in a dataset (Anderson
and Dunham, 2008; Kalinowski, 2011; Wang, 2017). Tess and Geneland
are also affected by isolation by distance but can better incorporate
spatial information (Safner et al., 2011). Clumpp v1.1.2 (Jakobsson and
Rosenberg, 2007) was then used to confirm individual membership
assignments for each population cluster. Individuals with a membership
coefficient of q≥ 0.7 were assigned to a single cluster, and individuals
with membership coefficients of 0.25≤ q≤ 0.7 were considered to
have shared membership between clusters.

3. Results

A total of 148 scats were collected over 15months of sampling, and
scat contents included hair, bone fragments, body parts (claws, quills),
soil, and vegetation. Transect length varied from ~2.5–10 km and the
number of scats encountered at each site varied due to differences in
survey effort and terrain, with lowland sites yielding far more samples
than submontane regions. More scats were observed on open trails and
logging roads compared to forest animal trails, due to the presence of
heavy leaf litter and decomposition on the forest floor. Most scats were
dried or partially decomposed on collection and varied in age (judged
subjectively) from>7 days old to>1month old. Preliminary analysis
did not reveal any significant correlation between PCR success and scat
location (e.g. animal trail, road, etc.) or scat contents (e.g. bones, hairs,
etc.), though fresher samples (< 1month old) stored in ethanol gen-
erally performed well (data not shown). We had variable success with

Fig. 1. a. Map showing the remaining Sumatran forest habitat that is occupied by tigers (data from Wibisono and Pusparini, 2010). Locations where fecal samples were collected are
indicated by the red points.
b. Regional subdivision of the Tiger Conservation Landscapes and protected areas sampled during this study. The Northern group includes the Ulu Masen ecosystem; the Western group
includes Kerinci Seblat NP and Batang Hari protection forest; the Eastern group includes Tesso Nilo NP, Kerumutan wildlife reserve, Bukit Tigapuluh NP, and Berbak NP; and the Southern
group includes Way Kambas NP. Locations of the tiger positive samples are represented by the red points. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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the detection dog, mostly due to the high temperatures and humidity,
and the logistical challenges of transporting the dog with our field
teams. This combined with the ongoing cost of the dog's husbandry
meant that it was far more effective to rely on field teams searching
visually alone.

DNA concentration per extract ranged from ~6–192 ng μl−1, but
this did not correlate well with PCR success. Thirty-seven samples were
positive for tiger DNA and variable results were obtained with the sex
and microsatellite primers. Ten samples with very low PCR success
rates across all loci (< 10%) were discarded immediately from the
dataset, and we were able to determine putative sex for 15 of the re-
maining 27 samples (8 males and 7 females). The mean number of
positive PCRs estimated with Gimlet was 0.54 (range 0.25–0.88) across
loci and 0.54 (range 0.36–0.77) across samples, with the proportion of
missing data per locus ranging from 12 to 72%. The 24 microsatellite
loci gave a PISIB value of 1.57×10−8, locus Fca 161 was mono-
morphic, and the most informative locus was Fca 94. Average allelic
dropout and false allele rates were 0.39 and 0.10 as estimated by
Pedant with 15,000 search steps. Microchecker identified two loci with
possible stuttering (Fca 201, Fca 220), and analysis with MicroDrop
highlighted two other samples with allelic dropout rates> 0.50.
Dropout rates above 0.50 have been shown to bias estimates of genetic
diversity and population structure (Smith and Wang, 2014). These two
individuals plus the three problematic loci (Fca 161, 201, and 220)
were therefore also removed from the dataset before subsequent ana-
lysis. Shaza suggested that all the remaining samples represented un-
ique individuals apart from a possible match between two pairs of
samples. Analysis with Colony suggested that these two pairs were most
likely to be full-sibs so they were retained. The final dataset thus con-
tained 25 individuals genotyped at 21 loci.

Overall, mean observed heterozygosity was 0.52 ± 0.03 s.e. and
unbiased expected heterozygosity (UHe) was 0.66 ± 0.03 s.e. (Table 1;
Table A4). The population sample did not appear to be in Hardy-
Weinberg equilibrium (FIS= 0.201), which may be due to non-random
mating or population subdivision. NeEstimator v2 gave an estimate of
effective population size (Ne)= 22.2 (95% CI 14.9–37.5), comparable
to that from the sibship assignment method in Colony (Ne=18 with
95% CI 9–40). We also found a significant pattern of isolation by dis-
tance, which gave a neighborhood size estimate of 29 individuals (95%
CI 16–115).

Overall differentiation between regions was low (θw=0.08), with a
θw value of ≤0.15 (95% CI 0.05–0.18) between the southern group and
the rest of the island. This agreed with the AMOVA analysis, which
suggested that most of the genetic variance could be explained by
grouping the regions into North-West-East and South (Table 2; Table
A6). Results from BayesAss suggested that there was little migration
into our out of the south region (mean migration rates≤ 0.06). Most
gene flow occurred from the west to the north, and from the west to the
east (mean migration rates≅ 0.20).

We found evidence of spatial autocorrelation with a significant re-
lationship between genetic and geographic distance up to 850 km (Fig.
A1). This is roughly equivalent to half the length of Sumatra. Analysis
with Structure, Tess and Geneland suggested two to four genetic

clusters with inconsistent assignment of individuals to the clusters
(Fig. 2; Table A7). Structure analysis inferred two main clusters – (i)
Riau samples north of Tesso Nilo NP and (ii) the rest of Sumatra, in-
cluding Ulu Masen, Kerinci Seblat NP/Batang Hari, and Way Kambas
NP. Structure results may have been biased by the unequal sample sizes
between regions, as it has been shown to assign all the individuals from
the largest sample to the same cluster (in this case the Riau samples).
The output from TESS also suggested two main clusters: one large group
encompassing the majority of the island, and a southern subgroup
containing the Way Kambas samples. In contrast, Geneland suggested 4
clusters: (i) an admixed northern group encompassing Ulu Masen, (ii) a
separate eastern group in Riau, (ii) an admixed east-west grouping in-
cluding Kerinci Seblat NP/Batang Hari and Jambi province, and (iv) a
southern Way Kambas group. These Geneland results infer some in-
fluence of underlying clinal variation within the Sumatran population.
Thus, due to unequal sampling and the presence of isolation by dis-
tance, it was not possible to combine results from these three clustering
methods to infer one pattern of population structure.

4. Discussion

This study represents the first genetic survey of the wild tiger po-
pulation on Sumatra to include all the Tiger Conservation Landscapes
and protected areas with global or long-term priority. Overall, estimates
of heterozygosity were higher than expected for an island subspecies,
with some evidence of southern Sumatran tigers becoming genetically
differentiated from the rest of the island. This is most likely due to
reduced migration into and out of this region as a consequence of an
expanding human population and agricultural footprint. With ongoing
deforestation and land conversion also occurring in Riau province, it is
likely that tigers in eastern Sumatra will eventually suffer a similar fate.

Sample collection over a period of 15months generated 148 scats,
which yielded useable DNA from 25 different tiger individuals. The
limited number of samples is in part due to the vast sampling area
considered (> 140, 000 km2 of occupied forest) and the low average
population density of tigers on Sumatra (~1–2 individuals/100 km2)
(Wibisono and Pusparini, 2010). It also serves to highlight that while
non-invasive samples such as feces and hair are valuable sources of
DNA for threatened mammal species in humid, tropical environments,

Table 1
Estimates of genetic diversity in subspecies of Panthera tigris. Microsatellite loci were not identical between studies, but showed some degree of overlap between the loci used.

Tiger subspecies No. of individuals No. of loci Observed heterozygosity Expected heterozygosity Reference

P.t. sumatrae 24 21 0.52 ± 0.03 s.e. 0.64 ± 0.03 s.e. This study
P.t. sumatrae 16 30 0.47 ± 0.02 0.49 ± 0.04 Luo et al. (2004)
P.t. altaica 34 30 0.47 ± 0.02 0.46 ± 0.04 Luo et al. (2004)
P.t. altaica 95 8 0.26 ± 0.11 – Henry et al. (2009)
P.t. corbetti 33 30 0.64 ± 0.02 0.67 ± 0.03 Luo et al. (2004)
P.t. jacksoni 22 30 0.56 ± 0.02 0.57 ± 0.03 Luo et al. (2004)
P.t. tigris 6 30 0.52 ± 0.04 0.57 ± 0.04 Luo et al. (2004)
P.t. tigris 73 5 0.70 ± 0.16 s.d. – Mondol et al. (2009)

Table 2
Pairwise differentiation (θw) for regional groups in the Sumatran tiger population.
Estimates were computed in Genepop and significant values (p < 0.05) are indicated
with an asterisk.

Northa East West South

North –
East 0.07⁎ –
West 0.06 0.03 –
South 0.15⁎ 0.15⁎ 0.13⁎ –

a North - Ulu Masen-Gunung Leuser ecosystem; East - Tesso Nilo NP, Kerumutan
Wildlife Reserve, Berbak NP; West - Kerinci Seblat NP, Batang Hari protection forest;
South - Way Kambas NP.
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the proportion of samples that can ultimately be used for genetic ana-
lysis ranges from ~25–75%, necessitating prolonged and repeated
surveys for sample collection (e.g. Bhagavatula and Singh, 2006; Ernest
et al., 2000; Janečka et al., 2008; Lucchini et al., 2002).

We also attempted to use a detection dog to increase sample de-
tection during our surveys. Despite cultural sensitivities to handling
dogs, the field teams adjusted well to working alongside the detection
dog once introductory training had been completed. However, the high
heat and humidity, hilly terrain, and changing locations challenged
both the dog's stamina and concentration, resulting in short periods of
work before his motivation and focus tailed off. Therefore, for this
study, we found that the field teams were more effective with consistent
survey effort rather than the alternating rest and work periods required
for the dog surveys.

Although DNA quality has been shown to deteriorate with in-
creasing sample age (Piggott et al., 2004; Santini et al., 2007; Panasci
et al., 2011), we collected all scats during our surveys due to the ex-
pected low encounter rate for intact scats in this tropical environment.
Fecal DNA is particularly prone to genotyping errors such as allelic
dropout and false alleles, but our results are similar to other non-in-
vasive studies in carnivores (Broquet and Petit, 2004). Many different
methods such as pre-amplification and sample dilution have been
proposed to improve PCR success for non-invasive samples, but they
had little effect in this study (data not shown). An ongoing pilot study in
our research group suggests that combining an appropriate method of
sample preservation (e.g. DNA/RNA Shield; Zymo Research), a DNA
extraction method including homogenization (e.g. using FastPrep-24;
MP Biomedicals), and amplification with inhibitor-resistant poly-
merases (e.g. KAPA2G Robust; KAPA Biosystems) can greatly improve
data quality (data not shown). As it is difficult to obtain good quality
scats in humid, tropical environments, others have explored the use of
alternative sources of DNA, such as swabs taken from urine scent marks,
which have much higher detection rates that scats in some sites
(Caragiulo et al., 2015). For example, scent mark to scat detection ra-
tios in Tambling Wildlife Nature Conservation, southern Sumatra, are
typically between 3:1 and 4:1 (unpublished results). Tigers pre-
ferentially spray scent on overhanging trees or leaves along territory
boundaries with up to 3.7 and 1.0marks per km for males and females,
respectively (Smith et al., 1989; Protas et al., 2010). Lipids contained
within the urine sprays enable them to persist on the surfaces of ve-
getation (Andersen and Vulpius, 1999; Burger et al., 2008), and their
characteristic scent is easily detected by people for up to 3 weeks after
deposition.

In this study, we used a subset of the microsatellite loci used by Luo
et al. (2004) to show that wild Sumatran tigers retain levels of genetic
variation comparable to mainland subspecies. Low heterozygosity has
been shown to correlate with a high risk of extinction for many species,
and threatened or island species are thought to have ~60–65% of the
microsatellite heterozygosity of similar or related non-endangered
species (Frankham and Ralls, 1998; Brook et al., 2002). Therefore, the
level of genetic variation found bodes well for Sumatran tigers as it
suggests that overall the population has not experienced significant
genetic drift. Given that heterozygosity is expected to be lost at a rate of
1/2Ne per generation due to genetic drift alone (Hedrick, 2005;
Hamilton, 2009), we would expect Sumatran tigers to lose 1–3% of
their genetic variation every generation (~ every 5–7 years). This is in
the absence of other threats and assumes that current estimates of ef-
fective population size (Ne≅ 18–29) and generation time remain un-
changed in the future. This rate could be higher for the smallest sub-
populations of tigers (N < 30 individuals), which would result in a
faster rate of decline and increased differentiation from other sub-
populations. While genetic drift and loss of genetic variation at the
subpopulation level could be counterbalanced to some extent by mi-
gration or gene flow (e.g. Vilà et al., 2003), those at the subspecies level
cannot be ameliorated by migration. Hence, while maintaining or in-
creasing connectivity is an important part of the management of low
density, wide-ranging species, the fundamental management strategy
should be to increase the overall population size by expanding tiger
habitat and/or improving habitat quality which then may also lead to
increasing connectivity.

Our results may also represent a type of genetic extinction debt, in
which population changes resulting from increased forest loss and
poaching are subject to a time delay (Habel et al., 2015). The delay
between the environmental change and a genetic effect is likely to be
greater for long-lived species with low rates of population turnover
(Kuussaari et al., 2009). Ultimately, if the pace of forest loss and human
activity continues at its current rate it is likely that we will start to see
signs of reduced heterozygosity and greater population isolation on
Sumatra (Helm et al., 2009). Increased homozygosity (and the resulting
inbreeding depression) have been associated with increased extinction
risk due to factors such as reduced reproductive success, a decrease in
population fitness, and increased susceptibility to disease (Amos and
Balmford, 2001; Spielman et al., 2004). Although these changes have
been noted in some carnivore populations (e.g. Johnson et al., 2010;
Fredrickson et al., 2007), for tigers there is little empirical evidence to
determine at what level these changes would occur.

Fig. 2. Maps showing the genetic subgrouping of positive tiger samples using 3 different algorithms in Structure, Tess, and Geneland. Structure preferentially separated northern Riau
samples from the rest of Sumatra. Tess placed southern Way Kambas samples into a separate group. Geneland suggested 4 subgroups, which could reflect underlying isolation by distance.
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The presence of isolation by distance suggests that Sumatran tigers
are partly structured by a neighborhood mating system in which in-
dividuals are more likely to mate within a given area governed by
dispersal distance. The estimated values of effective population size in
this study (Ne= 18–29) give an Ne:Nc ratio in the range of
~0.04–0.06, where Nc represents the total estimated population of 500
tigers. This is in line with previous studies in Bengal and Amur tigers
(Ne= 27–35) using genetic data and variance in reproduction (Henry
et al., 2009; Smith and McDougal, 1991), and is close to the average
ratio of 0.1–0.11 for wildlife populations (Frankham, 1995). However,
it is lower than other cat species such as the leopard, cheetah, and puma
in which ratios of 0.25–0.64 have been recorded (Nowell and Jackson,
1996; Spong et al., 2000; Kelly, 2001). Analysis with MRatio (Garza and
Williamson, 2001) did not provide evidence for a recent population
bottleneck (Smith, 2012) and thus other factors such as a polygynous
mating system, in which dominant males mate with most available
females, or sampling scale, may account for the low effective popula-
tion size (Kaeuffer et al., 2004; Neel et al., 2013). However, restricting
our analysis to the neighborhood size suggested by spatial auto-
correlation (< 850 km) did not result in a significant difference in the
estimates of Ne (data not shown).

In the absence of gene flow, populations lose alleles under the in-
fluence of genetic drift and become increasingly differentiated
(Falconer and MacKay, 1996). It was expected that geographic features
such as Lake Toba and the Bukit Barisan mountain range might influ-
ence tiger population structure as they interrupt the distribution of
other large mammals on Sumatra such as the tapir, orangutan, and
rhino (Wich et al., 2016; Pusparini et al., 2015; Linkie et al., 2013).
However, telemetry data shows that some tigers are capable of using
ridgelines to cross the Bukit Barisan mountain range (Priatna et al.,
2012), and our study did not find any obvious genetic discontinuity
caused by these features. This is likely due to the tiger's dispersal
ability, which can reach up to 65 km for males and 33 km for females
(Smith, 1993; Goodrich et al., 2010), and highlights the importance of
understanding differences in species' abilities to disperse across natural
and anthropogenic barriers.

The high concentration of roads, settlements and plantations across
parts of central Sumatra were also expected to act as dispersal barriers
(Smith et al., 1998; Kerley et al., 2002; Linkie et al., 2006), but again
our results suggest that either tigers have been able to maintain a fairly
continuous distribution using patches of ‘stepping stone’ habitat, or
more likely that insufficient time has passed for measurable genetic
drift to have occurred in this region. Given the tiger's long generation
time of 7 years (Seal et al., 1994), it could take up to 105 years (15
generations) for a landscape barrier to produce a detectable genetic
signature (Holzhauer et al., 2006; Landguth et al., 2010). Therefore, it
appears that the current Sumatran tiger population still exhibits evi-
dence of the continuous distribution and genetic variation present
within the ancestral Sunda population (Bay et al., 2014). However,
given the current rates of land conversion to commercial crops such as
oil palm and agroforestry, it is probable that much of the primary forest
at lower elevations outside of conservation areas will be lost in the next
30–50 years (Holmes, 2002). Repeating a genetic study such as this is in
the future is therefore likely to show a more extensive pattern of po-
pulation isolation and a more profound loss of genetic variation (Wearn
et al., 2012; With, 2004).

In contrast to central Sumatra, there appears to be very little gene
flow into or out of Way Kambas NP in the southern tip of Sumatra - this
national park showed the highest pairwise FST and the lowest migration
rates. These high FST values represent a separation from the sampled
TCL populations in western and eastern Sumatra. While we acknowl-
edge that there may be some exchange of individuals with the nearest
protected areas in Berbak/Sembilang NP and Bukit Balai Ranjang NP,
Way Kambas covers a relatively small area of isolated habitat
(~1300 km2) and has a small population of ~30 tigers with low oc-
cupancy rates (Wibisono et al., 2011; Sanderson et al., 2006).

Maintaining gene flow or connectivity and the quality of the sur-
rounding matrix is thought to be crucial to the survival of tigers within
smaller protected areas (Ranganathan et al., 2008). However, the pro-
spects for increasing connectivity in this region are bleak.

Primary lowland forest has been replaced by a mosaic of agri-
cultural crops and plantations, (Miettinen et al., 2008; Miettinen and
Liew, 2010), and a zone of urbanization surrounds the park such that
there are no significant buffer zones suitable for wildlife (Nyhus and
Tilson, 2004; Imbernon, 1999). Although the early stages of forest
conversion may be beneficial to tigers due to the creation of secondary
forest and edge habitats that support many prey species (Berry et al.,
2010; Maddox et al., 2007; Barlow et al., 2007; Sunquist, 1981;
Santiapillai and Ramono, 1987), many degraded or previously logged
areas are quickly converted to oil palm or other agricultural plantations
which are not as beneficial to tigers (Barber and Schweithelm, 2000).
Frontier activities by local communities at the borders of national
parks/wildlife reserves and agricultural concessions also commonly
progress to more wide-scale operations or permanent rural settlements
(Smith, 2009). And some habitat degradation, encroachment and
hunting also occurs within park borders such that these are not the
inviolate refugia their names suggest (e.g. Forrest et al., 2011; Gaveau
et al., 2009b).

Lowland peat swamp forest in eastern Sumatra is suffering a similar
fate with land being cleared at a rate of up to 2.3% per year (Uryu et al.,
2008; Hansen et al., 2009; Broich et al., 2011; Koh et al., 2011;
Miettinen et al., 2012). Riau lost> 50% of its primary lowland forest
between 1990 and 2010, and focus has now shifted to primary peat
swamp forest (Margono et al., 2012, 2014). This rate of deforestation is
likely to continue as Indonesia plans to increase its land allocation to oil
palm, paper and pulp to just under 15million hectares by 2030
(Wilcove et al., 2013). These land use types support much lower species
richness compared to primary forest (~38%), and tigers are commonly
extirpated from these areas (Maddox et al., 2007; Smith, 2009;
Danielsen et al., 2009; Fitzherbert et al., 2008). This combination of
poaching pressure and impoverished habitat is therefore likely to result
in a population decline and increased genetic differentiation between
protected areas as the options for tiger movement across the agri-
cultural matrix are reduced (Kenney et al., 1995; Linkie et al., 2006;
Chapron et al., 2008).

Tiger populations are more likely to suffer extinction debt in areas
where there is overlap with agricultural or rural development, and
these could serve as priority hot spots where intervention is most likely
to be effective (Helm et al., 2009; Wearn et al., 2012). Despite a na-
tional government moratorium on conversion of peatland and primary
forest since 2011 (Austin et al., 2014), the Ministry of Forestry has also
pledged a commitment to expanding the oil palm and timber industries
to support national and international demand (Kementerian Kehutanan,
2011; Brockhaus et al., 2012; Harahap et al., 2017). Uncertainties
around land classification and implementation of the moratorium have
resulted in continued loss of primary forest on Sumatra, particularly in
Riau province and around Tesso Nilo NP (Harris et al., 2017). There-
fore, there needs to be greater coordination across different government
policies (biofuels, climate, forestry and agriculture) to ensure adequate
protection of the primary and secondary forested lands which are key to
supporting the remaining tiger populations.

5. Conclusions

We present the first assessment of the effects of landscape change on
the tigers on Sumatra. Our results show that the Sumatran tiger has
retained levels of genetic diversity comparable to mainland subspecies
and that there is evidence to suggest reduced gene flow for tigers in the
extreme south of Sumatra. While we acknowledge the limited sample
size, the distribution of sampling sites represents a good proportion of
the remaining tiger habitat on Sumatra. Precise estimates of genetic
variation can be made with as few as 10 individuals (Smith and Wang,
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2014), and therefore, our results provide a good overview of the genetic
status of the wild Sumatran tiger population. This study also demon-
strates that the genetic data obtained from non-invasive samples is
critical to understanding the genetic diversity and population structure
of large-bodied, low-density mammals such as the tiger; individuals are
not easily captured for biological sampling, baited hair traps are not
reliable, and dens or latrines are rarely seen. Similar methods are being
used to study the Sumatran elephant and Sumatran rhino, which will
provide more information on the effects of land conversion on other
threatened large mammal species.
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